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FOREWORD

The Shenyang National Laboratory for Materials Science (SYNL) visions itself as a world leading
comprehensive platform for basic materials research. Leveraging on the established preponderant
disciplines, SYNL furthers the merging of disciplines to carries out visionary, strategic and cutting-

edge interdisciplinary basic research in the field of materials science and technology.

With the support of Ministry of Science and Technology (MOST), Chinese Academy of Sciences
(CAS), Liaoning province and Shenyang city, and through the efforts of all the colleagues and
graduate students, SYNL has made significant progress in research activites, represented by the
planification of materials, the 150 ton austenitic stainless steel ring manufactured using additive
forging technology, the discovery of colossal barocaloric effects, the flexible thermoelectric thin
film and microdevice for energy harvesting and on-chip cooling as well as the high performance Pd

single atomic catalyst based on cellulose elementary crystals.

In this report, we summarize the principal research activities in SYNL during the past calendar
year, including the research highlights, publications, funding situation, international collaborations
and education of graduate students, etc.. It provides not only a record of the progress in SYNL but
also a picture to understand the laboratory in the community of materials science for those who are

interested in it. Your comments and suggestions on this report are highly welcome.

On behalf of the Director | would like to thank our staff and students for the excellent work

performed in all divisions throughout the year 2019.

VAL 7z

(K. LU)
Director of SYNL
Shenyang, March 2020
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1.2 MANAGEMENT COMMITTEE (12)

Director:
LI Shushen (CAS®)

Vice-director:
ZUO Liang (IMR")

GAO Ruiping (National Natural Science Foundation of
China)
Committee Members:

LU Ke (IMR)

WANG Danan (Department of Science & Technology
of Liaoning Province)
ZHAO Rigang (Shenyang Bureau of Science and
Technology)
SHAN Yi (The People's Government of Hunnan
District, Shenyang)
ZHENG Xiaonian (CAS)

WANG Ying (CAS)
YANG Jinlong (University of Science and Technology
of China)

LU Jian (City University of Hong Kong)

SUN Jun (Xi’an Jiaotong University)

(“CAS: Chinese Academy of Sciences )

"IMR: Institute of Metal Research, Chinese Academy of Sciences)
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Brechet ik E##iEH REFSGEIKF
Yves

Gleiter f2EB-FRITEFELELFE
Herbert
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1.3 ACADEMIC COMMITTEE (12)
Director:
XUE Qikun (Tsinghua University)

Vice-director:
LIU Chain-Tsuan (City University of Hong Kong)

LU Ke (IMR")
Committee Members:
AN Lijia (Changchun Institute of Applied Chemistry,

CAS)
BRECHET Yves (Université Grenoble-Alpes, France)

GLEITER Herbert (Karlsruher Institut fiir
Technologie, Germany)
LIU Weimin (Lanzhou Institute of Chemical Physics,
CAS)
LI Yiyi (IMR)
WANG Weihua (Institute of Physics, CAS)
YE Hengqiang (IMR)

ZHANG Qingjie (Wuhan University of Technology)

ZHANG Ze (Zhejiang University)

(“IMR: Institute of Metal Research, Chinese Academy of Sciences)
("CAS: Chinese Academy of Sciences )
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Doing more with less

The performance of materials is often improved by stabilizing interfaces between
grains by alloying with other elements. Plainified materials accomplish this

goal by tailoring stable interfaces with fewer or no alloying elements, which can
improve resource sustainability.

Plainified materials

The material properties of metal A are
improved by creating smaller grains
with low-energy stable boundaries
and/or with segregation of a small
amount of alloying element B.

Tailoring properties

with stable interfaces
(small or no composition
changes)

@
O

Property-to-cost ratio

Tailoring properties
by alloying (large
composition changes)

Alloyed materials
Properties such as

Pure metals
Grain boundaries connect
grains of the metal A.

hardness of a pure metal
Acan be improved by
alloying with a dopant
element B or creating an
intermetallic AyCi-x.

Resource dependence and recycling difficulty
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2.1 Plainification of Materials

Extensive alloying makes material development more
resource-dependent. Alloyed materials with complicated
compositions become more difficult to synthesis and to
recycle. With increasing alloying, material cost continues
to spiral while property enhancements level off. The
sustainability of materials, especially metals, has gained
more and more attentions. Researchers proposed to advance
material properties by plainification to reduce alloying
in material development, which means tailoring stable
interfaces at different length scales instead of alloying. The
newly proposed strategy intends to lower materials cost
and increase their resource-independence and recyclability,
therefore advancing material sustainability.

Alloying changes material properties by modifying
the microstructures of the host element. Alloying can
create strong phases with robust interfaces to block
dislocation motion, solid solutions with internal stress
to make dislocation slip more sluggish, or both kinds of
microstructures. However, tailored microstructures can
be created without changing the chemical composition
of a material, often by processing the material to alter the
regions between crystallites-the grain boundaries (GBs).
Because GBs impede dislocation motion, decreasing the
crystallite size (grain refinement) can harden both metals
and alloys.

Doing more with less

The performance of materials is often improved by stabilizing interfaces between
grains by alloying with other elements. Plainified materials accomplish this

goal by tailoring stable interfaces with fewer or no alloying elements, which can
improve resource sustainability.

Plainified materials

The material properties of metal A are
improved by creating smaller grains
with low-energy stable boundaries
and/or with segregation of a small
amount of alloying element B.

Tailoring properties

with stable interfaces
(small or no composition
changes)

Property-to-cost ratio

o.

Pure metals
Grain boundaries connect
grains of the metal A,

Tailoring properties
by alloying (large
composition changes)

Alloyed materials
Properties such as
hardness of a pure metal
Acan be improved by
alloying with a dopant
element B or creating an
intermetallic AyCi—y.

Resource dependence and recycling difficulty
Fig. 1: Planification of Materials.
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Although with sound principle, plainification of metals
is facing challenges due to the intrinsic instability of
microstructures at the nanometer scale where property
variations are dramatically elevated. Recent studies
revealed that nano-sized grains in pure copper and nickel
produced from plastic deformation exhibit notable thermal
and mechanical stability against coarsening below a
critical grain size, thanks to an autonomous grain boundary
relaxation to low-energy states (Science (2018), Phys.
Rev. Lett. (2019)). This finding offers new possibilities for
developing stable nanostructured metals and alloys with
novel properties, foundation of the material plainification
strategy. Stabilization of nanoscale grains in metals
takes advantage of their ability to suppress dislocation
nucleation, providing a strengthening mechanism that is
distinct from the conventional way of resisting dislocation
slip.

The novel strengthening mechanism highlights new
opportunities of plainification for greatly advancing
material properties by tailoring stable interfaces at
different length scales with fewer or no alloying elements.
See Science 364 (2019) 6442 for more details.

2.2 150 ton Austenitic Stainless Steel Ring
Manufactured Using Additive Forging Technology

On March 12, 2019, the austenitic stainless steel
supporting ring with the world's largest diameter (15.6
meters) and the largest weight (150 tons) was successfully
rolled in Jinan using the additive forging technology
proposed by SYNL. This huge rolled ring is manufactured
without welding, so it has good microstructural uniformity.
It will be used in China's fourth-generation nuclear power
plants. Its successful development will effectively protect
China's nuclear industry equipment implementation. As
the core component of a nuclear power plant, the support
ring not only serves as the boundary and safety barrier
of the pressure vessel, but also serves as the "backbone"
of the entire vessels, thus bearing 7,000 tons of weight.
In the past, the supporting rings were manufactured by
multi-piece billet welding, which not only has a long
manufacturing processing and high cost, but also has
weak structural properties at the welding position, thereby
laying a hidden safety hazard for the operation of nuclear

power plant. After more than ten years of research,
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Fig. 2: Austenitic stainless steel supporting ring with a diameter
of 15.6 meters.

researchers first proposed the idea of additive forging
in the world. This technology uses multiple small-sized
homogenized slabs as the basis material. By means of
surface activation, vacuum sealing, and high-temperature
deformation, the bonding interfaces are completely healed
and its mechanical properties have no difference than that
of the basis material. As homogenized slabs are used, the
homogeneous large forging is obtained. Additive forging
technology has been evaluated by many experts as a
transformative and innovative technology in the field of
large forging manufacturing. It has been widely used in
hydropower, wind power, nuclear power and other fields.
Additive forging technology has played an important role

in promoting the rapid development of high-end equipment

10 1.5
QA"

in China and ensuring the independence and controlling
of the manufacturing of the core equipment. The research
results were widely reported by CCTV News, People's
Daily, and Science and Technology Daily.

2.3 Discovery of Colossal Barocaloric Effects

According to the UN statistics, 25 to 30 percent of the
world’s electricity is consumed for refrigeration. Current
refrigeration technology mostly involves the conventional
vapour compression cycle, but the materials used in this
technology are of growing environmental concern because
of their large global warming potential. As a result, both
the research community and industries are devoting to
exploiting environment-friendly, efficient refrigeration
technology.

As a promising alternative, refrigeration technologies
based on solid-state caloric effects have been attracting
attention in recent decades. These effects are described
by the isothermal entropy changes (AS) and the caloric
effects of current leading materials are characteristic of
entropy changes of dozens of joules per kilogram per
kelvin. In addition, unpractically large driving fields are
also required. These limited performances are the obstacle
to the application.

Recently, researcher and collaborators have performed
differential

pressure-dependent scanning calorimetric

measurements, high-resolution neutron scattering, and
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Fig.3: QENS measurements at ambient pressure (a) and 286 MPa (b), obtained at 325 K with £=2.64 meV. INS measurements at
ambient pressure (c) and 286 MPa (d), obtained at 325 K with E=23.72 meV.
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synchrotron X-ray diffraction on neopentyl glycol (NPG)
as the prototype material. It was found that this material
exhibited the maximum entropy changes of 389 J kg'K"!,
achieved at applied pressure of 45.0 MPa. This value is
one order of magnitude larger than those of current leading
caloric materials, as shown in Figure. More important, the
entropy changes exceed one half of the maximum at 15.2
MPa, which is very beneficial to the practical application.
Accessing large-scale facilities in Japan (J-PARC and
SPring-8) and Australia (ANSTO) to utilize neutron
scattering and synchrotron X-ray diffraction techniques,
the team revealed that the constituent molecules of NPG
are extensively orientationally disordered on the lattices
and these materials are intrinsically very deformable.
As a result, a tiny amount of pressure is able to suppress
the extensive orientational disorder to induce the phase
transitions to the ordered state and thus huge pressure-
induced entropy changes are obtained. These two merits
make plastic crystals the best barocaloric materials so
far. In Fig. 3, plastic crystals reported in this study are
compared to other leading caloric materials.

This research has established the microscopic scenario
on colossal barocaloric effects of plastic crystals and also
suggested that plastic crystals are an emerging class of
caloric materials, which might benefit the design of better

caloric materials and solid-state refrigeration technology
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in the future.

2.4 Flexible Thermoelectric Thin Film and
Microdevice for Energy Harvesting and On-chip
Cooling
Inorganic  chalcogenides are traditional high-
performance thermoelectric materials. However, they
suffer from intrinsic brittleness and it is very difficult to
obtain materials with both high thermoelectric ability
and good flexibility. Here, researchers report a flexible
thermoelectric material comprising highly ordered
Bi,Te, nanocrystals anchored on a single-walled carbon
nanotube (SWCNT) network, where a crystallographic
relationship exists between the Bi,Te, <1210> orientation
and SWCNT bundle axis. This material has a power factor
of ~1,600 pWm'K? at room temperature, decreasing
to 1,100 pWm'K? at 473 K. With a low in-plane
lattice thermal conductivity of 0.26+£0.03 Wm'K™, a
maximum thermoelectric figure of merit (ZT) of 0.89 at
room temperature is achieved, originating from a strong
phonon scattering effect. A prototype of TE micro-module
consisting of eight hybrid p-n-couples is demonstrated,
which achieves a maximum output power density of
~5.7 mWem? under 30 K temperature difference and a

maximum cooling of ~22 K at the target region with a
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3

]
]

600 800
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Fig. 4: Bi,Te;-SWCNTs flexible hybrid and micro-device characterization.
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heat absorption density of ~54 W cm™, exhibiting great
advantages in microelectronics. Our results may pave
the way for a bright future for flexible TE devices in the
booming energy market.

2.5 High Performance Pd Single Atomic Catalyst
Based on Cellulose Elementary Crystals

Suzuki coupling reaction is an important reaction in the
organic synthesis industry and plays an important role in
the pharmaceutical industry. The Pd catalyst is the core
of the suzuki reaction. However, the excessive use of Pd
in the existing commercial Pd catalysts not only causes
excessive use costs, but also the Pd lost from the catalyst
will also cause product pollution. It has been reported
in the literature that these reactions can become more
economically attractive and safer only if the palladium
loading of the catalyst is reduced to a level below 100 ppm.
To this end, we have selected independently developed
cellulose element crystals (CECs) as the support for Pd

catalysts. Pd atoms close to 0 valence are fixed in situ on
a specific crystal plane with a low coordination number,
and a kind of Pd-CECs monoatomic catalyst with high
activity and high stability. The X-ray absorption spectrum
was used to determine the coordination mode and
valence information of Pd. By studying the intermediate
information of Pd-CECs and reactants, it was confirmed
that the catalyst can be used as a catalytic platform for
suzuki reaction. Through the characterization of oxidative
addition intermediates by EXAFS, it can be confirmed that
the activation of halogenated hydrocarbons can occur in
situ on Pd-CECs, which prevents the loss of Pd during the
reaction. At the same time, CECs as a carrier can activate
phenylboronic acid intermediates and further improve the
conversion rate of the reaction. The catalyst can be applied
to multiple types of reactants, and can realize kilogram-
scale catalytic reaction applications. Under a 20 L small-
scale reaction system, it reached the high reaction rate
along with high turnover number at the level of 300,000
h' TOF and 15,000,000 TON in kg scale.

(b)
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Energy(eV)
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=
E 15
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Fig. 5: (a) Scheme of stabilization single Pd atoms; (b) HAADF-STEM image of Pd/CECs on MXene; (c) Normalized Pd Kedge
XANES spectra of Pd,/CEC and Pd foil (inset: calculated first derivative curves); (d) EXAFS spectra of Pd,/CEC ( blue line) and Pd

foil (red line) at the Pd R-space.
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3.1 Materials Kinetics Division
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3.1.1 Summary of Scientific Activities

Materials Kintetics Division explores materials and material processes from the perspective of kinetics, one of the
key fundamental fields of materials science. We focus on the kinetic processes in terms of understanding basic aspects
of phase transformation and structure-property relationship in heterogeneous structures of multi-scale and of developing
novel technologies for materials processing and manufacturing. Our goal is to develop advanced materials, covering
amorphous metals and alloys, nano-metals and alloys and their composites for engineering applications, contributing to
achieve a positive impact on the lives of people from home and abroad.

The main achievements over last one year are as following:

(1) A systematic study has been recently carried out to evaluate the fracture properties and crack propagation process
in gradient structured (GS) nickel, involving grain size gradients from ~30 nm to 4 um. The team found that an optimized
combination of high strength and high toughness can be achieved in the gradient structured material. Scientists also
found that CG—NG gradient structure, where a pre-existing crack initiates from CG zone and propagates into NG zone,
displays the best combination of strength and toughness properties; with largest degree of R-curve toughening behavior,
similar to the CG material. On the other side, the NG—CG gradient structure, where a pre-existing crack initiates from
NG zone and propagates into CG zone, exhibits a degree of R-curve toughening in excess of the NG structure, but less
than that of the CG—NG gradient structure. This study seeks not only to develop a mechanistic understanding of the
fracture behavior of GS materials, but also may provide practical guidelines for the use of such materials in safety-critical

applications.

(2) We used submerged FSW technology to effectively overcome the tool wear and overheat problem for the first time,
and successfully produce a defect-free ultrafine-grained Ti joint with a joint efficiency of 100%. The deformation modes,
grain refinement mechanisms and their relationships during FSW were systematically investigate. This study provides a
new method of fabricating high-quality joints and ultrafine-grained bulk Ti materials, and also provides a new reference

for understanding the microstructural evolution mechanism during FSW.

(3) The corrosion evolutions of the coatings under wet-dry cyclic conditions were investigated by EIS on a two-
electrode cell. Accurate R, was obtained through fitting EIS results using a modified transmission line equivalent
circuit model and a landscape map of R was constructed for a panoramic investigation on coating corrosion. This work
proposed an accurate method for the electrochemical measurements and life evaluations of the coatings under wet-dry
cyclic conditions.

(4) The effects of different microstructure of Ti-based bulk metallic glass composites (BMGCs) containing in-situ
formed B-Ti crystals on their tensile properties were systematically investigated. A BMGC with a composition of
Ti, Zr,, Cu, Co, Be,  was then designed. This BMGC exhibits a yield strength as high as ~1380 MPa and a uniform

elongation of 5.2% accompanying remarkable work-hardening capacity. As compared with the previously reported

335 16.6

BMGCs, this BMGC possesses an excellent combination of properties, including high yield strength, large tensile

plasticity, good work-hardening capacity and extraordinary glassy forming ability of the glassy matrix.

(5) Gradient nanograined (GNG) materials with the spatially graded distributed grain sizes from nano-meter in the
surface to micron scale in the core exhibit a combined enhancement of mechanical properties, such as high strength,
considerable ductility. In this study, GNG Cu with a thin superficial GNG layer is found to exhibit an unprecedented
combination of cyclic properties during cyclic loading: doubling both low-cycle fatigue life and high-cycle fatigue limit,
compared to its homogenous CG counterparts.The present results offer unique pathways to mitigate fatigue damage using

gradient nanostructure in many practical applications.
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3.1.1.1 Exceptional Damage-Tolerance of Gradient
Metallic Materials

Nature always inspires material scientists to seek ways
to enhance the mechanical properties of engineering
structural materials from the structure-property relations
in natural materials.

For example, bamboo stems possess a gradient structure
that comprises a decreasing density of vascular bundles
from their exterior inwards the center, leading to enhanced
flexibility yet overall strength and stiffness. Using the
inspiration of such natural materials, there have now been
several attempts to replicate these gradient structures to
create structural metallic materials with similarly favorable
combinations of properties.

Although excellent combinations of strength and
ductility can be achieved with gradient structures, it’s
a challenge to guarantee that the fracture resistance will
be similarly superior, as it is the local microstructure that
affects the fracture toughness of the materials

A systematic study has been recently carried out to
evaluate the fracture properties and crack propagation
process in gradient structured (GS) nickel, involving grain
size gradients from ~30 nm to 4 pm.

The team found that an optimized combination of high
strength and high toughness can be achieved in the gradient
structured material, compared to the ultrahigh-strength
nano-grained (NG) and low-strength coarse-grained (CG)

uniformed grain-sized structures.

Scientists also found that CG—NG gradient structure,
where a pre-existing crack initiates from CG zone and
propagates into NG zone, displays the best combination of
strength and toughness properties; with largest degree of
R-curve toughening behavior, similar to the CG material.
Once crack extension approaches the end of gradient
structure, however, unstable brittle fracture can occur as
the crack encounters the nano-sized grains. Therefore, the
CG—NG gradient structure represents a characteristic
transition from ductile fracture to brittle fracture.

On the other side, the NG—CG gradient structure,
where a pre-existing crack initiates from NG zone and
propagates into CG zone, exhibits a degree of R-curve
toughening in excess of the NG structure, but less than
that of the CG—NG gradient structure. However, it is less
susceptible to outright fracture as the propagation of brittle
cracks in the nano-grains of the early part of the gradient
region become arrested once they reach the coarser-grained
regions due to excessive crack-tip blunting. Therefore, the
NG—CG gradient structure represents a characteristic
transition from brittle fracture to ductile fracture, which
might be preferred for some safety-critical applications.

This study seeks not only to develop a mechanistic
understanding of the fracture behavior of GS materials, but
also may provide practical guidelines for the use of such
materials in safety-critical applications.

This work has been published in Mater. Today 32 (2020)

94, collaborating with researchers from UC Berkeley.
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3.1.1.2 Fabrication of High-quality Ti Joint with
Ultrafine Grains Using Submerged Friction Stir
Welding Technology and Its Microstructural
Evolution Mechanism

To clarify the deformation mode of various metals
during friction stir welding (FSW) is rather difficult
due to the instantaneity and complexity of the plastic
deformation process during FSW. Therefore, for a long
time, the researchers have treated it as a "black box" to
study microstructural evolution mechanisms during FSW,
resulting in one-sided conclusions. Since a significant
commercial success has been achieved for the FSW of Al
alloys, FSW has now developed to apply in high-melting
point materials such as steels, Ti alloys and hard-to-weld
composite materials. Among them, obtaining defect-free
welds of Ti and its alloys has been largely hindered by the
tool wear and overheat problem due to their high reactivity
and low thermal conductivity.

In this work, we used submerged FSW technology to
effectively overcome the tool wear and overheat problem
for the first time, and successfully produce a defect-free

ultrafine-grained Ti joint with a joint efficiency of 100%.
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The transmission electron microscopy with a two-beam
diffraction technique, electron backscatter diffraction and
finite element simulation are utilized to systematically
investigate the deformation modes, grain refinement
mechanisms and their relationships during FSW. It
was found that the deformation and recrystallization
mechanisms of Ti during FSW were associated with
the domination of {1012} twins, basal, prismatic <a>
slip and pyramidal <at+c> slip at different deformation
stages, and continuous dynamic recrystallization related
to the dislocation absorbing. Also, the contribution of
twin-dislocation interaction, dislocation absorption,
grain boundary migration and texture on the ultimate
ultrafine-grained microstructure, and the underlying
effect of temperature and orientation on the deformation
mechanisms were clarified. This study provides a new
method of fabricating high-quality joints and ultrafine-
grained bulk Ti materials, and also provides a new
reference for understanding the microstructural evolution
mechanism during FSW. More detailed description can be

found in Acta Mater. 166 (2019) 371.

0.2 ptm

Fig. 2: Temperature distribution and deformation mechanism during submerged friction stir welding of pure Ti.
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3.1.1.3 Insight into the Corrosion Evolution of Fe-
based Amorphous Coatings under Wet-dry Cyclic
Conditions

Understanding the corrosion behavior of Fe-based
amorphous coatings under wet-dry cyclic conditions is
of pretty importance for coating applications in marine
environments. However, it is extremely difficult to
unravel corrosion features under wet-dry cyclic conditions
by conventional electrochemical measurements as the
solution resistance is very high.

In this work, the corrosion evolutions of the coatings
under wet-dry cyclic conditions were investigated by
EIS on a two-electrode cell. Accurate R was obtained
through fitting EIS results using a modified transmission
line equivalent circuit model and a landscape map of R |
was constructed for a panoramic investigation on coating
corrosion. The results show that the corrosion rate increases
rapidly when the solution film over the coating become
very thin due to fast oxygen transport under ultrathin
solution film. It is deduced that an oxygen concentration
gradient can form between--- the inside and the outside of
coating pores when the solution film over the coating is
very thin, which further promotes the localized corrosion
in the pores. In general, the substrate is well protected
by the coatings against corrosion under wet-dry cyclic
conditions. This work proposed an accurate method for the
electrochemical measurements and life evaluations of the
coatings under wet-dry cyclic conditions.

>

Dry/
10

1: High corrosion resistance

2: Localized corrosion

3.1.1.4 Optimization of Tensile Properties of Ti-
based Metallic Glass Composites

The effects of different microstructure of Ti-based
bulk metallic glass composites (BMGCs) containing
in-situ formed B-Ti crystals on their tensile properties
were systematically investigated. With increasing the
particle size of the B phase, the BMGCs exhibit a higher
tensile plasticity and a higher work-hardening capacity.
It was found that the phase stability of the B phase plays
a vital role on tensile properties of BMGCs: BMGCs
containing a stable B-Ti phase undergo a tensile work-
softening behavior after yielding. BMGCs containing
a metastable B-Ti phase exhibit a poor tensile plasticity
with severe serrated deformation after yielding. BMGCs
containing a phase-transformable B-Ti phase show the
best tensile plasticity as well as work-hardening capacity.
With increasing the volume fraction of the [ phase, the
yield strength of BMGCs decreases although their tensile
plasticity increases.

Therefore, in order to obtain an excellent combination
of properties of BMGCs, the B-Ti phase should have a
larger particle size, an appropriate phase metastability and
a relatively low fraction. This is because a larger particle
size can result in a larger tensile plasticity; an appropriate
metastability can lead to deformation-induced phase
transformation and cause an improved tensile plasticity as
well as work-hardening capacity; and a low fraction can
bring a high yield strength of the composites. A BMGC

3: Coating failure
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transmission line equivalent circuit model.
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Fig. 4: BT35-50-Col possesses an excellent combined
properties, including the high yield strength and the large cast
size, as compared with the reported BMGCs in literature.

with a composition of Ti, Zr,, Cu ,Co Be , (BT35-

50-Col) was then designed. The average particle size of 3
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phase is about 16 um, and the volume fraction is only 38%.
This BMGC exhibits a yield strength as high as ~1380
MPa and a uniform elongation of 5.2% accompanying
remarkable work-hardening capacity. As compared with
the previously reported BMGCs, this BMGC possesses an
excellent combination of properties, including high yield
strength, large tensile plasticity, good work-hardening
capacity and extraordinary glassy forming ability of the
glassy matrix (see Fig.4).

3.1.1.5 Improved Fatigue Resistance of Gradient
Nanograined Cu

Numerous metallic components suffer from fatigue
damage and failure, arising from the vast accumulation
of very small irreversible plastic microstrain under
cyclic loading. Dislocation activity associated with the
formation dislocation patterns occur in conventional
coarse grained (CG) metals, thereby causing local surface

roughening, early cracking and inferior high-cycle fatigue

limit. Intensive studies over past 30 years have indicated
homogeneously refining CG into the ultra-fine (UFG) and
nano-scale (NG) can greatly enhances strength and fatigue
limit by suppressing dislocation activities. However,
uniform grain size reduction always causes a very shorter
low-cycle fatigue life and pronounced cyclic softening of
UFG and NG metals. Such inferior fatigue resistance arises
from microstructural instability and cyclic-deformation-
induced local damage accumulation, such as that produced
by shear banding and/or abnormal grain coarsening.

Recently, gradient nanograined (GNG) materials with
the spatially graded distributed grain sizes from nano-
meter in the surface to micron scale in the core exhibit a
combined enhancement of mechanical properties, such as
high strength, considerable ductility. In this study, GNG
Cu with a thin superficial GNG layer is found to exhibit
an unprecedented combination of cyclic properties during
cyclic loading: doubling both low-cycle fatigue life and
high-cycle fatigue limit, compared to its homogenous
CG counterparts (Fig.5). Specially, cyclic stability at
constant stress amplitude is maintained in GNG Cu after
a short initial hardening stage, in distinct contrast to the
cyclic hardening of CG metals and cyclic softening of
UFG metals under strain control. Such superior fatigue
resistance stems from the unique homogenecous grain
coarsening and the progressive homogenization of an
initially gradient nanostructure through ordered cyclic
plastic strain transmission from CG core to GNG surface
layer, which effectively suppresses both strain localization
and surface roughening concurrently (Fig.1). This unique
fatigue mechanism is fundamentally distinct from
traditional persistent strain-localizing fatigue behaviors in
homogeneous structures, associated with large local surface
roughening. The present results offer unique pathways to
mitigate fatigue damage using gradient nanostructure in
many practical applications (The details see Acta Mater.
166 (2019) 56).
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Fig. 5: Graded surface nanostructure and its fatigue properties. Cross-sectional EBSD image of GNG/CG Cu produced via surface
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3.2 Materials Structure and Defect Characterization
Division

T.

= [211]

DIVISION HEAD: MA Xiuliang
RESEARCH GROUP LEADERS: (5)

MA Xiuliang (Ultra-high Resolution Transmission Electron Microscopy of Interficial Structures)
DU Kui (Quantitative Electron Microscopy Investigation on Kinetics of Materials Deformation)
ZHU Yinlian (Low Dimensional Ferroelectric Functional Materials)

WANG Shaoqing (Theoretical Study of Material Structure and Defects)

CHEN Chunlin (Differential Phase Contrast Scanning Transmission Electron Microscopy)
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3.2.1 Summary of Scientific Activities

By means of transmission electron microscopy, we focus on material structures and defect characterization, address
some unclarified fundamental issues in materials science, explore the frontier problems in materials science, and provide
atomic-scale information for developing high-performance engineering alloys and advanced functional materials. In

2019, we made some progress in several aspects.

(1) We fabricated ultrathin PbTiO, films grown on a SrTiO,(111) substrate with atomically defined surfaces. High
resolution scanning transmission electron microscopy and X-ray diffraction reveal that the as-grown [111]PbTiO; films
are coherent with the substrate and compressively strained along all in-plane directions. In contrast, the out-of-plane
lattices are almost unchanged compared with that of the bulk PbTiO,, resulting in 4% contraction in unit cell volume and
a nearly zero Poisson’s ratio. Fabricating oxide films through [111] epitaxy may facilitate the formation of new phase

components and exploration of novel physical properties for future electronic nano-devices.

(2) We fabricated millimetre-sized w-BN bulk crystals via the hexagonal-to-wurtzite phase transformation at high

pressure and high temperature.

(3) We clarified the underlying mechanisms of interface-related deformation modes at an atomic scale in fully lamellar
Ti-6Al1-4V alloys.

(4) We fabricated free-standing monolayer Au membranes by in situ dealloying of Au—Ag alloy.

(5) We investigated in details the microscopic adsorption mechanism of graphene on the low-index metal surfaces
such as the (111), (110) and (100) surfaces of Ni, Co and Cu by first-principles calculation..

3.2.1.1 Ultrathin Ferroelectric Film with a Nearly
Zero Poisson’s Ratio

[111]-oriented perovskite oxide films exhibit unique
interfacial and symmetry breaking effects, which are
promising for novel quantum materials as topological
insulators and polar metals. However, due to strong polar
mismatch and complex structural reconstructions on (111)
surfaces/interfaces, it is still challenging to grow high
quality [111] perovskite heterostructures let alone explore
the as-resultant physical properties. Here we report a
fabrication of ultrathin PbTiO, films grownona SrTiO,(111)

substrate with atomically defined surfaces, by pulsed laser

deposition. High resolution scanning transmission electron
microscopy and X-ray diffraction reveal that the as-grown

. . Fig. 1: Experimental evidence for the low symmetry polar
[111]PbTiO, films are coherent with the substrate and 8 P N "oy v P

PbTiO; phase grown on SrTiO;(111). (a) BF-STEM image
compressively strained along all in-plane directions. In  of the 6 nm [111]PbTiO; film showing O” columns. Contrast

contrast, the out-of-plane lattices are almost unchanged is inverted here to ease visual inspection. The red box area is
’ magnified as an inset, which displays the significant Ti-O (d;.)

compared with that of the bulk PbTiOy resulting in 4% displacement. (b) The &, displacement vector maps based on
contraction in unit cell volume and a nearly zero Poisson’s ().

ratio. Ferroelectric displacement mapping reveals a
monoclinic distortion within the compressed [111]PbTiO,,

with a polarization larger than 50 uCcm™. The present
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findings, as further corroborated by phase field simulations
and first principle calculations, differ significantly from
the common [001]-oriented films. Fabricating oxide films
through [111] epitaxy may facilitate the formation of
new phase components and exploration of novel physical
properties for future electronic nano-devices.

3.2.1.2 Phase Transformations in Metastable
Superhard Material

Waurtzite boron nitride (w-BN) is a fascinating superhard
material with a hardness next to diamond, rendering it a
candidate material to replace diamond. However, w-BN is
a high-pressure metastable phase, which tends to recover
to the h-BN phase after releasing pressure. How to stabilize
w-BN at atmospheric pressure is a challenging subject and
the related mechanism remains unclear.

In this study, we fabricate millimetre-sized w-BN
bulk crystals via the hexagonal-to-wurtzite phase
transformation at high pressure and high temperature. By
combining transmission electron microscopy and ab-initio
molecular dynamics simulations, we reveal a stabilization
mechanism for w-BN, i.e. the metastable high-pressure
phase can be stabilized by three-dimensional networks of
planar defects which are constructed by a high density of

intersecting (0001) stacking faults and {1010} inversion

(b)

domain boundaries. The three-dimensional networks
of planar defects segment the w-BN bulk crystal into
with

Our findings

numerous nanometer-sized prismatic domains
the reverse crystallographic polarities.
unambiguously demonstrate the retarding effect of
crystal defects on the phase transformations of metastable
materials, which breaks the common knowledge that the
crystal defects in materials will facilitate the occurrence of

phase transformations.

3.21.3 Twins and Sequential Kinks in Fully
Lamellar Ti-6Al-4V Alloys

Fully lamellar Ti-6Al-4V alloys comprise body-
centered cubic (BCC) B lamellae in large-sized, hexagonal
close-packed (HCP) a colonies, presenting outstanding
toughness. Although it is generally considered that
o/f interfaces play a key role in plastic deformation
connected to the toughness, the interface effects have not
been revealed so far. In this work, we studied underlying
mechanisms of interface-related deformation modes at an
atomic scale. After the cyclic loading, {1102} deformation
twins were observed in the vicinity of fatigue crack
surfaces. Moreover, the o/ interface structures before and
after cyclic loading deformation were characterized via

transmission electron microscopy (TEM). The initial o/p

S ot o
h-BN w-BN —05mm
O E R R LR R R RRR () LA AR
lqn.ll!dtitl‘. ~§.le""i
FTEFEFSETETLLAEE S f}""“.““‘
LARAARE S YT T ‘Q‘::“|.':::::
FF R RS AR AR AL (ord xR
A ',-‘..-.-a
A ey .aooafoﬂhbﬁ\\t
. . A S v eye e “““."""'
FPEFFET T ETLEAE R """".‘*“
TTEEe. y\\st\t..v-ﬁf &

""'gf\'

PR . S -

Fig. 2: (a) Photograph of the high-purity h-BN bulk crystal, (b) As-synthesized w-BN bulk crystal appearing a black color. (c)
HAADF and (d) ABF STEM images showing the intersection of the (0001) ISF and (0110) IDB. The two orthogonal planar defects

penetrate each other and construct an ISF-IDB junction..
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interfaces are consisting of (0110 )“||(T21)B terrace plane
and (1 100)a||(101)'3 ledge plane, which can be explained by
the terrace ledge kink model. TEM investigations reveal
that deformation twins nucleated at the o/f interface and
the corresponding nucleation is ascribed to the dissociation
of <a> type dislocations in basal plane. The type of
deformation twins is determined by the atomic scale o/f
interface structure. More importantly, these twins can
continuously propagate through multiple B phase lamella.
The continuous propagation of twinning is accomplished
through double kinking mechanism. In this way, the

plastic deformation associated with twinning in o phases

a

‘smwm.Tﬂm-ﬂ.b

I ! 1oLl

Fig. 3: Twin nucleation from the o/p interface and the twinning
transmission mechanism from a to B. (a) HR HAADF-STEM
image of interface structure along [0001]a|[[101]B direction
showing obvious ledge terrace planes; (b) deformation twinning
is observed starting and terminating at the o/p interface; (c) A
schematic of the twinning nucleation mechanism from <a> type
dislocations dissociation, showing the formation of T,' and T,
twin variants at the P, and P; planes. Schematic of reaction of
basal <a> type dislocations at different planes into different twin
dislocations and residual dislocations; (d) BF-TEM morphology
of a typical twin-p interaction area viewed along [2110],// [llT]B
direction after fatigue deformation. (e) Schematic illustrations of
twinning transmission from o to f.

and sequential kinking in B phases can contribute a lot
to fracture toughness of fully lamellar Ti-6Al-4V. (Acta
Mater: 181(2019) 479)

Au

3.2.1.4 Two-dimensional Membrane and

Nanoribbon

Two-dimensional (2D) materials, such as graphene,
nitride, and transition metal dichalcogenides have
triggered enormous enthusiasm for research owing to their
attractive mechanical, optical, electronic, and chemical
properties. A common feature in these 2D materials is
strong intralayer covalent bonding and weak interlayer van
der Waals bonding. Atomic-thick flakes can be prepared
using exfoliation methods by breaking weak interlayer
interactions. However, in metals, the bonding is metallic
and more isotropic, and normally, it is impossible to
exfoliate metallic materials to form monatomic-thick
membrane. Thus far, few reports have demonstrated
fabrication of monolayer metal membranes, whether it is
through surface diffusion on graphene or direct etching
of 2D metal selenide. Under those circumstances, the
properties of metal membranes are heavily influenced by
carbon atoms at the edges of graphene pores. Meanwhile,
the size of defect-free monolayer metal membranes is
limited for fabrication from 2D metal selenides. Despite
the difficulties, if 2D membranes can be synthesized,
they should exhibit distinct properties from their 3D
counterparts attributed to the reduction in dimension and
dramatic changes of electronic structures. For example,
theoretical calculations have suggested enhanced magnetic
moment in free-standing monolayer Hf and Fe. Theory has
predicted that closely packed monolayer Au membrane has
low visible-light absorption and good conductivity, with
great potential for an ideal transparent conducting material
with advantages over graphene. Before validating the
theory, it is crucial to find ways to synthesis free-standing
monolayer Au membranes.

In this work, we fabricated free-standing monolayer
Au membranes by in situ dealloying of Au—Ag alloy.
Regarding of the crystal orientation of different grains, all
the Au membranes maintain a closely packed hexagonal
lattice and remain robust under electron beam irradiation.
Moreover, monolayer Au nanoribbons with both zigzag

and flat edges are observed. The zigzag-edged nanoribbons
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Fig. 4: (a-c) Electron micrographs of fabricated monolayer
Au membranes; (d-f) The thickness determination; (g) The
fabrication of a monolayer Au membrane by in situ dealloying
of Au-Ag alloy.

with width between 0.65 and 0.9 nm are ferromagnetic
with magnetic moments of 0.38—0.51 uB per unit cell,
according to first-principles calculations. Based on direct
measurement from atomic resolution images of monolayer
and bilayer Au membranes, the bond length between atoms
decreases linearly as coordination number decreases.

This study demonstrates a new approach to fabricate
monolayer metal membranes and nanoribbons. Free-
standing monolayer membranes or nanoribbons of
metals can be fabricated from bulk solid solution alloys,
which comprise atoms with distinctly different knock-on

energies, by in situ dealloying.

: i 4

3.2.1.5 Microscopic Mechanism of Chemical and
Physical Adsorption of Graphene on the Metal
Surfaces

Graphene is considered as an ideal reinforcement phase
of metal matrix composites due to its excellent electrical,
mechanical and thermal properties. Interfacial bonding
between graphene and metal plays an important role in
the properties of composites. However, the mechanism of
interfacial bonding between graphene and metal needs to
be further explored.

In this study, we investigated in details the microscopic
adsorption mechanism of graphene on the low-index
metal surfaces such as the (111), (110) and (100) surfaces
of Ni, Co and Cu by first-principles calculation. The
results show the graphene sheet has a different degree of
buckling after graphene is adsorbed on the (110) and (100)
surfaces, while the graphene sheet has no buckling when
graphene is adsorbed on the (111) surface. The adsorption
of graphene on the Ni(111), Co(111), Ni(110), Co(110)
and Cu(110) surfaces is chemical adsorption, while the
adsorption of graphene on the Cu(111) is only physical
adsorption. Interestingly, the adsorptions of graphene
on the (100) surfaces of Ni, Co and Cu are all physical
and chemical mixed adsorption. The projected density of
states and the differential charge density results show there
are strong orbital coupling effect and a large amount of
charge accumulation between carbon and metal atoms in
the chemical adsorption while there are almost no orbital
coupling effect and charge accumulation between carbon
and metal atoms in the physical adsorption. In addition,
there are a strong orbital coupling effect and a large amount
of charge accumulation between carbon and metal atoms
in some parts while there are almost no orbital coupling
effect and charge accumulation between carbon and
metal atoms in other parts of the surface in the physical
and chemical mixed adsorption. The interface bonding
mechanisms between graphene and these metals are fully
clarified in this study. The results will provide help for the
preparation of graphene and its application in the R & D of

composite materials.
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Fig. 5: Differential charge density and projected density of states at physical and chemical mixed interface.
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3.3 Metallic Nano-Materials Division
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3.3.1 Summary of Scientific Activities

Research at the Metallic Nano-Materials Division focuses on discovery of novel nanostructures in metallic materials,

exploration of their novel properties and structure-property relationships and development of next-generation metallic

materials with superb properties and performance. The research area includes design of novel nanostructures, synthesis

and structural characterization of nanograined metals, and exploration of their mechanical, physical and chemical

properties, and functionalities. The current research topics are size limits in metals, strain induced nanotwinned metals,

chemistry of nanocrystalline metals, application fundamentals of nanostructured metals.

3.3.1.1 Size Dependence of Grain Boundary
Migration in Metals under Mechanical Loading

In classical models of mechanical properties of solids,
GBs are often treated as “static” geometrical barriers to
dislocation motion. Based on this, a well-known grain size
dependence of strength is derived, predicting increased
strength with decreased grain size, namely, the Hall-Petch
relationship. However, deviating from this relationship,
some nanograined metals exhibit softening with decreasing
grain size. One of the fundamental reasons is that GBs
move in response to mechanical loading with concomitant
coarsening of nanograins, especially for pure metals, as
evidenced by experiments and by atomistic simulations
in a number of nanograined metals and alloys under

various loading conditions such as tension, compression,

and indentation, even at cryogenic temperatures. The
mechanically induced GB migration not only deteriorates
properties of nanograined materials but also hinders their
processing by plastic deformation.

Grain size dependences of GB migration in nanograined
Ag, Cu,

quantitatively in a wide size range by using gradient

and Ni under tension were investigated

nanograined (GNG) samples which have unique strain
delocalization mechanisms and enable very large tensile
strains without failure in the nanograined layer. It is found
that as grain size decreases from submicron, GB migration
intensifies and then diminishes below a critical grain size.

In Cu samples, after tension with a strain of 0.31,
the topmost nanograins with grain size of 44+£10 nm
coarsen slightly to 48+13 nm. While, in the subsurface

layer coarsening is evident, from 106+32 nm to 170+41

)
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Fig. 1: Longitude-sectional SEM images of the surface layers in the gradient nanograined Cu sample (Cu-1) before (a) and after
tension (b), and the distributions of the measured transversal grain sizes from TEM observations at a depth of 1 ~2 pm (c),(d) and
~30 pum (e),(f) from the surface, respectively. (g),(h) Variations of the measured transversal grain size as a function of depth from
the surface before and after tension in the samples Cu-1 (grain size on the topmost surface is 44+10 nm) and Cu-2 (grain size on the
topmost surface is 64+20 nm), respectively. (i) Relative grain size changes (AD=D,) as a function of depth for the two samples.
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nm at a depth of 30 um. According to the grain size
profiles measured along depth before and after tension,
the change in grain size peaks at a depth of 15 pum with
corresponding grain size of 75 nm with a maximum value
of 90%. It drops with a decreasing depth below 15 pm
and becomes negligible at the topmost surface. A similar
grain coarsening phenomenon was also observed as the
sample was tensioned at 77 K. Similar inflection point
were also found in Ag and Ni samples at 80 nm and 38 nm,
respectively.

The suppression of GB migration below a critical size can
be attributed to GB relaxation during sample processing,
which can be attributed to inhibition of full dislocations
and nucleation of partials to form twins or stacking
faults in nanograins. With relaxed GBs the governing
deformation mechanism of nanograins shifts from GB
migration to formation of through-grain twins or stacking
faults. GB relaxation, analogous to GB segregation, offers
a novel approach to stabilizing nanograined materials
under mechanical loading. See Phy. Rev. Lett. 122 (2019)
126101 for more details.

3.3.1.2 Plastic Deformation Induced Hexagonal-

Close-packed Nickel Nano-grains

For those FCC metals with high SFE such as Ni and Al,
FCClatticeisrather stable and the FCC-HCP transformation
is difficult to occur even at high temperatures or pressure,
or under severe plastic deformation. No phase transition
has been identified so far in FCC Ni in a wide temperature
range up to its melting point and under a pressure up to
200 GPa.

It is discovered that Ni nano-grains with hexagonal-
close packed lattice structure can be induced by plastic
deformation. As discovered before, below 30 nm, formation
of stacking faults with partial dislocations becomes
dominant in nano-grained Ni, replacing dislocation
slip and GB activities commonly observed in coarse-
grained Ni. As grain size decreasing further, formation
of multiple stacking faults in FCC nano-grains elevates
their energy state and the FCC nano-grains may become
thermodynamically unstable due to the increased excess
energy. Below 17 nm, an FCC-to-HCP transformation
occurs. Formation of hexagonal-close-packed Ni nano-

grains induced by plastic deformation. The finding offers
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Fig. 2: (a) Grazing-incidence XRD patterns of the samples with
different grain sizes in the top surface layers (20 nm and 8 nm)
and the annealed sample (8 nm) at 773 K for 1 h. (b) Lattice
parameters of nano-grained Ni as a function of grain size.

a novel approach to tailor lattice structures of metals that
are stable in coarse-grained form. See Scripta Mater. 168
(2019) 67 for more details.

3.3.1.3 Tensile Deformation Mechanisms of
Gradient Nanograined Cu-Al Alloys

The microstructures of the gradient nanograined Cu
and CuAl samples before and after tension at different
strains were systematically investigated by transmission
electron microscope. It is revealed that grain coarsening
dominates the plastic deformation of nanograins in the
gradient nanograined Cu sample while the propensity
of deformation twinning in nanograins increases in the
gradient nanograined CuAl samples.

In the past decades, numerous strategies have been
made by material researchers to improve the ductility and
work hardening and to discover the intrinsic deformation
mechanism of nanograins. Among all of the successful
attempts, the gradient nanograined (GNG) structure seems
to be one of the effective and powerful approaches to
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Fig. 3: (a) The orientation map of nanograins at the depth of
5 pm and (b) corresponding distribution of boundaries in the
gradient nanograined Cu-4.5A1 sample at the tensile strain of
0%; (c) the orientation map of nanograins at the depth of 5 um
and (d) corresponding distribution of boundaries in the GNS/
CG Cu-4.5A1 sample at the tensile strain of 35%.

suppress the strain localization and to realize the tensile
ductility of the nanograined materials. In our work, a
gradient nanostructured (GNS) surface layer was induced
on coarse-grained (CG) Cu and CuAl alloys by means of
surface mechanical grinding treatment. The GNS/CG Cu-
4.5A1 sample subjected to tensile tests yields at a higher
strength and fails at a higher uniform elongation (~42%) in
comparison with the GNS/CG Cu and Cu-2.2Al samples.
The microstructures of the GNS/CG samples before
and after tension at different strains were systematically
investigated by transmission electron microscope. It
is revealed that grain coarsening dominates the plastic
deformation of nanograins in the GNS/CG Cu sample
while the propensity of deformation twinning in nanograins
increases in the GNS/CG CuAl samples. The experimental
results suggested a transition of deformation mechanism of
nanograins from grain coarsening to the partial dislocation
associated deformation twinning in the GNS/CG Cu and
CuAl alloys with increasing Al solute concentration. This
work demonstrated that besides the nanograin coarsening,

the partial dislocation associated deformation twinning

- i 4

is also an effective deformation mechanism to retard the
strain localization and to improve the tensile ductility
of nanograins. The relevant work was published in Acta
Mater. 180 (2019) 231.

3.3.1.4 Simultaneous Enhancement of Stress-
and Strain-controlled Fatigue Properties in 316L
Stainless Steel with Gradient Nanostructure

As the grain sizes are refined into ultrafine/nanoscale in
metallic materials, considerable enhancements in fatigue
properties will be achieved under stress-controlled mode.
However, the fatigue properties under strain-controlled
mode usually decrease due to the lack of ductility. In
the present work, a gradient nanostructured (GNS)
surface layer of ~800 pum in thickness is manufactured
on 316L austenitic stainless steel by means of surface
mechanical rolling treatment at controlled temperature
(W-SMRT, ~280 C). The average grain size is ~45 nm at
the top surface and increases gradually with depth, while
deformation-induced martensite (DIM) transformation is
completely suppressed in the surface layer. Axial tension-
compression fatigue tests show that fatigue properties of
the GNS samples are significantly enhanced under both
stress- and strain-controlled modes. Fatigue limit in stress-
controlled tests increases from 180 MPa of the CG samples
to 320 MPa of the GNS samples. Simultaneously, fatigue
lives of the GNS samples are higher than those of the CG
samples in strain-controlled tests, especially under plastic
strain amplitudes < 0.25%. For example, the fatigue lives
of the GNS samples are ~20 times higher than those of the
CG samples at the plastic strain amplitude of 0.1%. This
is different from the fatigue properties typically observed
in homogenous nanostructured materials, i.e. enhanced
fatigue strengths in stress-controlled tests accompanied
by decreased fatigue lives in strain-controlled tests. For
example, the fatigue lives of nanostructured 316L stainless
steel samples prepared by equal channel angular pressing
are only ~15% of those of the CG samples at the plastic
strain amplitude of 0.1%. Besides contributions from the
enhanced mechanical properties and suppressed formation
of surface defects, analyses of fatigue mechanisms
demonstrate that the promoted formation of DIM during
cyclic strain plays a crucial role in enhancing fatigue

properties of the GNS samples in strain-controlled tests.
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Fig. 4: Cyclic stress response curves of the GNS and CG
316L stainless steel samples fatigued at different constant total
amplitudes as indicated.

The formation of DIM results in a distinct secondary
hardening stage and a higher strain homogeneity under
cyclic deformation, leading into higher fatigue strength
and endurance (Fig.4). See Acta Mater. 168 (2019) 133 for

more details.

3.3.1.5 A Nanotwinned Austenite Stainless Steel

with High Hydrogen Embrittlement Resistance

It is well documented that the strength of stainless steel
can be effectively improved by pre-strain (introducing
martensite into metastable austenitic stainless steel) and
grain refinement, however these methods can cause the
reduction of the hydrogen embrittlement (HE) resistance
and the loss of plasticity. It is well known that the interface
energy of twin boundary is relatively low, which can
impede dislocation movement and is not the trapping site
for hydrogen. Thus, twin boundary is a potential interface
structure that can enhance strength and inhibit hydrogen
embrittlement. However, the twin interface density of
stainless steel produced by traditional method is low,
which has been found to have no obvious effect on the
HE resistance. Up to now, the development of austenitic
stainless steel with high strength and high hydrogen

embrittlement resistance is still challenging. In order
to solve this problem, we successfully introduced nano-
twin structure into austenitic stainless steel by dynamic
plastic deformation (DPD) and subsequent annealing. The
304 stainless steel consists of 41% nano-twin structures,
32% recrystallized grains and 27% dislocation structures.
The tensile tests under the condition of electrochemical
hydrogen charging show that the alloy not only has a high
strength and a good plasticity, but also has a good hydrogen
embrittlement resistance. This is mainly due to the fact that
the bundle like nano-twins in the deformed 304 stainless
steel can effectively alleviate the local plastic deformation
caused by hydrogen, and a large number of partial
dislocations generated by the reaction of dislocations
and twin boundaries under hydrogen environment
can contribute to the additional work hardening. See
J. Alloy. Comp. 788 (2019) 1066 for more details.
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Fig. 5: (a) Engineering stress-strain curves of CG, DPD and
DPD-annealed samples tested in air and hydrogen environment
with a strain rate of 10 s, schematic describing of (b) slip
localization at a single TB and (c) a homogeneous distribution
of stain at nanotwinned structure.
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3.4 Advanced Ceramics and Composites Division
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DIVISION HEAD: WANG Jingyang
RESEARCH GROUP LEADERS: (5)

WANG Jingyang (Multifunctional Thermal and Environmental Barrier Coatings)

LI Meishuan (Ultra-High Temperature Structure Materials and Protective Coatings)
WANG Xiaohui (Functionalization of Structural Ceramics)

ZHANG Guangping (Thin Films & Small-scale Materials and Mechanical Behavior)
ZHANG lJie (Advanced Nuclear Materials)
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3.4.1 Summary of Scientific Activities

The research activities of this division are focused on: multi-scale materials design and structure-property relation
of advanced high-temperature structural/functional ceramics and composites; novel processing methods for bulk and
low-dimensional (nano-powder and thin film) ceramics and composites; performances and thermal/chemical stability of
ceramics and composites under extreme environments (high-temperature, loading, oxidation and corrosion); fabrication of

small-scale materials and nanocomposites, size and interface effects, strength-ductility and fatigue & fracture properties.

In 2019, staffs in our division authored and co-authored 46 papers, applied and registered 8 Chinese patents, delivered

30 keynote and invited presentations in international and domestic academic conferences.

Our division focused on fundamental researches of advanced ceramics and composites for extreme environmental
applications. We developed new strategies and conducted innovative works on high throughput materials design, novel
materials processing technology, advanced microstructural characterization, and rapid property evaluation in harsh

environments. Representative advancements are summarized as flowing.

(1) The general trends are disclosed for rare earth silicates corroded by high temperature water vapor and molten oxide
(CMAS). A connection between corrosion behavior and rare earth (RE) species were fundamentally established. The
results demonstrated a new mechanism of intrinsic corrosion inertness of rare earth silicates under high temperature hot
gas and CMAS attacks. A comprehensive database of corrosion resistances was constructed and used to guide the precise

design of rare earth elements in advanced thermal and environmental barrier coatings.

(2) The high entropy rare-earth silicates multifunctional thermal and environmental barrier coating materials were
developed. The critical thermal and corrosion resistance properties were synergetic optimized through the high entropy
effects of rare earth elements.

(3) Multilevel assembly scheme is developed for the elegant fabrication of boron nitride aerogels consisting of
varied superstructures, i.e. nanoribbons composed of tiny nanocrystals and nest-like structures tangled by nanofibers.
Interestingly, the resultant aerogels exhibit great contrast in their hydrophilicity, which could be attributed to the
microstructure difference. The processed BN aerogel also demonstrated extremely low thermal conductivity (0.025
W-lem/K™), that provides an opportunity for its super insulator applications in UHT.

(4) Zirconium carbide with controlled stoichiometry was accomplished by Physical Vapor Deposition technique. By
means of synchrotron X-ray diffraction as well as first-principle calculations, the 3 nearest neighboring carbon vacancy
pairs was traced in the sub-stoichiometric zirconium carbides and the formation of 3NN VC triplet benefited to lower
the energy of defective structure. Moreover, under high radiation damage level, the sub-stoichiometric ZrC_ . exhibited

improved radiation tolerance compared with the stoichiometric ZrC .. It is expected to provide ceramic material

screening for Generation IV nuclear power systems.

(5) Effects of air pressure on oxidation of UHTC have been investigated. In latm air at 1800 C, ZrB,-20SiC possessed
good oxidation resistance; but in 10, 5, 0.5 kPa air, active oxidation of SiC happened adjacent to the oxide/substrate
interface, a SiC-depleted layer appeared under the oxide scale, the oxidation resistance became worse with decreasing
of air pressure. By adding MSi, (M=Mo, Ta and Hf), the oxidation resistance of ZrB,-20SiC composite was improved
greatly, mainly due to inhibiting the formation of highly volatile products. Based on Wagner’s internal oxidation theory,
the critical conditions of temperature and oxygen partial pressure were analyzed quantificationally, the synergistic effect
of further oxidation of SiO in oxygen gradiently - distributed oxide scale and the vapour pressure of SiO on the oxide

surface on the completeness of oxide scale was proposed.

(6) We propose a strategy by integrating a negative electrode of Ti,C,7' MXene and a positive electrode of redox-

active hydroquinone (HQ)/carbon nanotubes. The two electrodes are separated by a Nafion film that is proton permeable
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in H SO, electrolyte. Upon charging/discharging, hydrogen ions shuttle back and forth between the cathode and anode
for charge compensation. The proton-induced high capacitance of MXene and HQ, along with complementary working
voltage windows, simultaneously enhance the electrochemical performance of the device. Specifically, the hybrid
supercapacitors operate in a 1.6 V voltage window and deliver a high energy density of 62 Wh kg'. This work offers

the possibility of designing high-energy-density noble-metal-free asymmetric supercapacitors for practical applications.

(7) We have found the relationship between fatigue resistance of Mo/W multilayers and the individual layer thickness.
We also found the mechanism thermal fatigue behavior of the nanocrystalline metal influenced by both line thickness
and the grain size. A grain-boundary-arrangement related stochastic model has been proposed to understand the fatigue
cracking behavior of the Cu/W multilayers. Succeeding in establishing equipment for evaluation of creep properties of
small-scale components exposed to high-temperature service conditions. We have clarified the effect of scanning strategy

and heat treatment strategies on mechanical properties and high-temperature creep resistance of selective laser melted
Inconel 718.

earth elements in advanced thermal and environmental
Our work further developed the
processing techniques of RE-silicate powders for different

3.41.1 Design and Advanced Processing

Technology of Multifunctional TEBC barrier coatings.

In order to support breakthrough on multifunctional
thermal and environmental barrier coating for aviation
engines, we disclosed the general trends of rare earth
silicates corroded by high temperature water vapor and
molten oxide (CMAS). A connection between corrosion
behavior and rare earth (RE) species were fundamentally
established. The results demonstrated a new mechanism
of intrinsic corrosion inertness of rare earth silicates
under high temperature hot gas and CMAS attacks. A
comprehensive database of corrosion resistances was

constructed and used to guide the precise design of rare

1000-

=]
=
o

Infiltration depth/pm
=)
S

plasma spraying technologies. This progress has solved
the critical bottleneck restriction of RE-silicate powder
suppliers from abroad companies. Using home-made RE-
silicate powders, PS-PVD and APS (atmospheric plasma
spraying) technologies were developed to successfully
fabricate RE-silicate coatings with the typical columnar
microstructure of thermal barrier coating and the typical
dense microstructure of environmental barrier coating,
respectively. The present work verified our innovative
concept of multifunctional TEBC and will contribute to the

advancement of a new type of high-temperature resistant

Matrix:
Er,Si0;, Y,Si0; matrix
Reaction zone

1200~ - 100
- 80
125 , 0
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m strontium aluminosilicate YSZ=Yttria-stabilized zirconia

Fig. 1: Database for CMAS corrosion resistances of thermal and environmental coating materials
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TEBC with excellent thermal and chemical compatibility.
These results have been published in 9 papers in Corros.
Sci., Scripta Mater., Sci. Rep., J. Am. Ceram. Soc., J. Eur.
Ceram. Soc., JMST and Mater. China (Chinese Journal)
and applied 3 national invention patents.

3.4.1.2 Cock-tail Effects in the Properties of
Multicomponent Rare Earth Silicate Thermal and
Environment Barrier Coating Materials

In our previous studies, Ho and Er containing silicates
showed remarkable resistance to high temperature water
vapor corrosion; and Y and Yb containing silicates
exhibited excellent resistance to CMAS (CaO-MgO-
AlO, -Si0,) corrosion. Herein, equiatomic quaternary
rare ecarth silicate solid
(Y, Ho Er Yb ),SiO, were studied to explore the
synergetic optimization effects of different RE elements.
Dense and pure X,-(Y, ,Ho, ,Er, Yb,,
was successfully synthesized by hot press method.
HAADF (High-angle annular dark-field) images directly

confirmed the compositional and structural homogeneity

multicomponent solution

),Si0; solid solution

at the atomic scale, specially four kinds of RE ions are
homogenously dispersed on RE lattice sites.

Thermal expansion coefficient of
(Y, Ho ,Er Yb ).SiO,is 11~19% lower than those of the
single constituents RE,SiO, (RE=Y, Ho, Er, Yb) and closer
to those of Si-based ceramics, which is good to reduce
residual tensile thermal stress of as prepared coating.
Meanwhile, thermal conductivity at room temperature
of (Y, ,Ho, Er  Yb ) SiO; decreases 5.4~66.8%, which

is attributed to enhanced phonon anharmonic scattering

1/4 1/4

ook @ Sh@1400°C
0.0906
0.08 |
0.0554 mg/em’:
predicted by mixture rule

0.06 0.0647

0.04

0.02

Specific weight change (mg/em’)

0.00
Y, Si0,

Ho S0,

ErSi0,  YbSiO, (Y, Ho Er Yb

[l T¥ Sl 1

Recession layer thickness (um,

0
),Si0,

caused by lattice distortion in complex multicomponent
RE-silicate. Besides, the resistances to water vapor and
CMAS of (Y, Ho, Er Yb
better than the averaged magnitudes of single-constituent
RE,SiO,. (Y, Ho, Er  Yb
TEBC candidate with optimal and balanced properties

),Si0, are close to and

),Si0, as a multifunctional

1/4 1/4

provides new perspective on the design of TEBC by
complex RE-doping route.

3.4.1.3 Design and Characterization of Advanced
Radiation-resistant Ceramics

In Generation IV reactors, the structural materials
will be exposed to much higher irradiation doses and
operated at much higher temperatures. As a result, the
lifetime displacement damage levels to core structural
materials may approach 200 displacements per atom
(dpa), or even higher levels in some concepts. Zirconium
carbide is considered as an attractive structural material
for new generation reactors operating at high temperature.
Besides, zirconium carbide is a typical non-stoichiometric
compound with a high carbon vacancy concentration.
The microstructure evolution under high-dose irradiation
was critical for the feasibility of zirconium carbides in
advanced reactors

Accordingly, advanced zirconium carbides have been
designed with tuning carbon vacancy characteristics.
By means of synchrotron X-ray diffraction as well as
First-principle calculations, the structural characteristics
and stability of non-stoichiometric zirconium carbide
have been identified. The microstructure evolution of

zirconium carbides with different stoichiometry induced

600
[ ()

00 F

50 h @ 1300°C

502

400 315 pm:

predicted by mixture rule

329

300

200

Y, Si0,

HoSiO, ErSiO, YbSiO, (Y, Ho Er Yb )SiO,

Fig. 2: Resistance to (a) water vapor and (b) CMAS corrosion of (Y, ,Ho,,Er,,Yb,,,),SiOs
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induced

Typical SAED and atomic arrangements

Stoichiometric

Irradiated Region I

Zirconium Carbide
(ZrCoge)

200 400 600 800

Highely irradiated Region II

Sub stoichiometric

Irradiation induced partial amorphization and ordering

Typical morphology and atomic
arrangement

N\

Zirconium Carbide

(ZrCq s5)

depth (nm)

Fig. 3: Depth profiles of damage level, expressed in displacements per atom (dpa), and implanted ion concentration induced by 3
MeV Au ion irradiation in stoichiometric ZrC, g, and sub-stoichiometric ZrC, s (Data were calculated using the SRIM code). As well
as the representative microstructures of irradiated ZrC, 4, and ZrC, s; under the doses of 120 and 180 dpa.

by 3 MeV Au ion irradiation were investigated, over a
series of ion fluences ranging from 1xE" to 2xE!¢ ions
cm?. The highly irradiated and virgin regions could be
identified as representative microstructures in irradiated
ZrC, . and ZrC_, under the doses of 120 and 180 dpa,
respectively. Compared with the stoichiometric ZrC

0.86

0.86°

the sub-stoichiometric ZrC, .. exhibits improved radiation

0.55
tolerance. This work provides a practical strategy for the
enhancement of irradiation tolerance through the novel

concept of defect engineering in lattice.

@

0.5 kPa 5, 10 kPa

3.41.4 Internal Oxidation of ZrB,-SiC-MSi,
Composites at 1800°C in Low Pressure Air

Ultra-high temperature ceramics (UHTC) have great
potential applications as structural materials over 1600
C in thermal protection systems and propulsion systems
of future hyper-sonic aerospace vehicles. Due to serving
at ultra-high temperature in oxidizing environmint, good
ablation/oxidation resistance is required for UHTC. Up to
now, ultra-high temperature oxidation of UHTC has not

been investigated systematically because of the limitation

0.5 kPa 5,10 kPa

(b)

s
- g

[ h{_‘_’ Ealsgke
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i 7/ A o
Internal oxidation zone g O Internal oxidation zone R B
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Fig. 4: Schematic illustrations of external / internal oxidation and various interface reactions of (a) ZrB,-20SiC and (b) ZrB,-20SiC-

MoSi, during oxidation at 1800 C in 0.5 and 5, 10 kPa air.
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of experimental techniques. Especially, the investigations
about the effects of air pressure (i.e oxygen partial
pressure) are very limited. Therefore, it is significant to
further understande oxidation mechanism of UHTC at
ultra-high temperatures.

By using the gas-contrable ultra-high temperature
oxidation facility established in our laboratory, effects of
air pressure on oxidation of ZrB,-20SiC-xMSi, (M=Ta,
Mo and Hf, x=0~10 vol.%) composites at 1800 C have
been investigated. In latm air, ZrB,-20SiC possessed
good oxidation resistance; but in 10, 5, 0.5 kPa air (the
corresponding oxygen partial pressure was, 2, 1 and 0.1
kPa, respectively), active oxidation of SiC happened
adjacent to the oxide/substrate interface, a SiC-depleted
layer appeared under the oxide scale, the oxidation
resistance became worse with decreasing of air pressure.
The addition of MoSi, improved the oxidation resistance
of ZrB,-20SiC composite, mainly inhibited internal
oxidation in 10 kPa air, greatly reduced the thicknesses
of internal oxidation layers formed in 5 and 10 kPa air.
This was attributed to the reactions of MoSi, with ZrB,
and highly volatile B,O, to form stable MoB, causing the
formation of a continuous, compact and silica-rich outer
oxide layer with lower oxygen permeability.

In this work, effects of air pressure on oxidation of
UHTC have been explored, the critical conditions of
temperature and oxygen partial pressure were analyzed
quantificationally based on Wagner’s internal oxidation
theory, the synergistic effect of further oxidation of SiO in

oxygen gradiently-distributed oxide scale and the vapour

pressure of SiO on the oxide surface in air with different
pressures on the completeness of oxide scale was proposed.
This work was published in Corros. Sci. 157 (2019) 87.

3.41.5 Hydrogen-lon-Rocking-Chair
Supercapacitor

Hybrid

MXenes have emerged as promising high-volumetric-
capacitance supercapacitor electrode materials, whereas
their voltage windows are not wide. This disadvantage
prevents MXenes from being made into aqueous symmetric
supercapacitors with high energy density. To attain high
energy density, constructing asymmetric supercapacitors
is a reliable design choice. Here, we propose a strategy to
achieve high energy density of hydrogen ion aqueous-based
hybrid supercapacitors by integrating a negative electrode
of Ti,C,T _MXene and a positive electrode of redox-active
hydroquinone (HQ)/carbon nanotubes. The two electrodes
are separated by a Nafion film that is proton permeable in
H,SO, electrolyte. Upon charging/discharging, hydrogen
ions shuttle back and forth between the cathode and
anode for charge compensation. The proton-induced high
capacitance of MXene and HQ, along with complementary
working voltage windows, simultancously enhance the
electrochemical performance of the device. Specifically,
the hybrid supercapacitors operate in a 1.6 V voltage
window and deliver a high energy density of 62 Wh kg™,
which substantially exceeds those of the state-of-the-
art aqueous asymmetric supercapacitors reported so far.
Additionally, the device exhibits excellent cycling stability
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Fig. 5: Assembly of all-solid-state MXene//CNT-HQ hybrid supercapacitors. (a) Schematic and CV curves of the two hybrid
supercapacitors connected in parallel. (b) Schematic and CV curves of the two hybrid supercapacitors connected in series. (c) Two
MXene//CNT-HQ hybrid supercapacitors connected in series can drive a set of green light-emitting diodes.
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and the all-solid-state planar hybrid supercapacitor
displays exceptional flexibility and integration for bipolar
cells to boost the capacitance and voltage output. These
encouraging results provide the possibility of designing
noble-metal-free

high-energy-density asymmetric

supercapacitors for practical applications.

3.4.1.6 Effect of Scanning Strategy on Mechanical
Properties of Selective Laser Melted Inconel 718

Selective laser melting (SLM) is one of the promising
additive manufacturing (AM) technologies, which is
capable of fabricating near-net shape metallic components
with geometrically complex structures. Despite many
advantages, SLM process still faces a lot of challenges
that need to be addressed prior to widespread industrial
application. Two main challenges are microstructure
heterogeneities and randomly dispersed defects, which
result in the uncertainty and degradation in mechanical
properties, especially fatigue properties. To obtain the final
components with high density and optimal mechanical

properties, many efforts have been devoted to optimize

300pm

the processing parameters, such as laser energy density,
building orientation, and scanning strategy. Besides, it is
urgent to build up the relationships among the process,
microstructure and mechanical properties. Scanning
strategy is an important variable that significantly affects
the thermal history during the SLM process and further
influences the specimen density, residual stress and
evolution of the microstructures, ultimately changes the
mechanical properties.

In this work, two types of scanning strategies of SLM,
i.e. bidirectional scanning without (SS-X) and with a
90°-rotation (SS-XY) for every layer, were adopted
to produce the Inconel 718 specimens. The results
show that tensile strength and fatigue strength of SS-X
specimens are superior to that of the SS-XY ones. Such
excellent mechanical properties of the SS-X specimens at
room temperature were found to mainly result from the
processing-induced fine grain structures compared with
void size, grain orientation or dendrite structure. The above
findings would be helpful to realize site-specific control of
the grain structure and mechanical properties by tailoring

the scanning strategy during the SLM process.

Fig. 6: Band contrast (BC) maps showing grain structure of the (a) SS-X and (b) SS-XY specimens from the YZ cross section, insets
in (a) and (b): pole figures of the SSX and SS-XY specimens, respectively, high-magnification SEM backscatter electron images of

the dendrite structure of the (c¢) SS-X and (d) SS-XY specimens.
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3.5 Advanced Carbon Division
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3.5.1 Summary of Scientific Activities

The research activities in the Advanced Carbon Division are focused on: Preparation, property and application of
carbon nanotubes, graphenes and other 2D materials; nanocarbon-based flexible electronic devices; novel electrochemical
energy storage materials and devices; advanced energy conversion materials and devices; advanced bulk carbon and

carbon- based composite materials.
The main progresses made in 2019 are as follows:

(1) We prepared a single-wall carbon nanotube film decorated with N-doped carbon-encapsulated Ni nanoparticles
as a bifunctional electrocatalyst. When used as anode and cathode for overall water electrolysis, a current density of 10
mA cm? was achieved at an applied potential of 1.57 V, showing excellent catalytic performance and potential for use in

metal-air batteries.

(2) We developed a liquid-phase quenching method that enables ultrafast growth of nanocrystalline graphene films
within a few seconds. Wafer-scale continuous uniform AB-stacked bilayer graphene films were prepared on a specifically-
designed liquid Pt,Si/solid Pt substrate by chemical vapor deposition. These works push forward the control over the

structure and properties of graphene and other 2D materials.

(3) A silicon-graphene-germanium transistor was fabricated. Compared with the previous tunnel emitters, the on-
current of the Si-Gr Schottky emitter shows the maximum on-current and the smallest capacitance, leading to a delay
time more than 1,000 times shorter. Thus the alpha cut-off frequency of the transistor is expected to increase from about
1 MHz by using the previous tunnel emitters to above 1 GHz by using the current Schottky emitter.

(4) We found that the self-discharge driven by ion concentration gradients and potential can be effectively restricted
inside the solid/solid electric double-layers. A dual-graphene lithium ion capacitor was constructed by solid/solid
interfacial electrode, which shows a high energy density and power density coupling with long cycle life and high energy
efficiency. These studies will promote the understanding of electric double-layer mechanisms in organic systems and

provide guidance for the design of high-performances cells.

(5) Homogeneous doping of substitutional carbon/nitrogen for oxygen in the TiO, decahedral plates with a dominant
anatase phase is obtained for the first time. The resultant TiOz_X(CN)y with an unusual band-to-band visible light absorption
spectrum and enhanced electron transport ability can induce photocatalytic water oxidation to release oxygen under
visible light irradiation. This work provides not only a promising visible light-responsive TiO, photocatalyst but also an
important strategy for developing other solar-driven photocatalysts.

Film

3.5.1.1 Single-wall Carbon Nanotube impeded their wide use in fuel cells, air-metal batteries and

Decorated with N-doped Carbon-encapsulated Ni
Nanoparticles as a Bifunctional Electrocatalyst
for Overall Water Splitting

Electrochemical water splitting is considered as one of
the most reliable and efficient ways for the production of
clean, renewable and sustainable hydrogen energy, which
is based on two half reactions: the hydrogen evolution
reaction (HER) and the oxygen evolution reaction (OER).
Currently, the state-of-the-art catalysts are based on
noble metals, including Pt, Ir and Ru. However, their low

abundance, high cost and non-sustainability have seriously

other related energy storage/conversion devices.

Here, we prepare binder-free and flexible films of
Ni/SWCNT hybrid materials containing very small Ni
particles encapsulated in monolayer carbon decorated on
a network of high-quality SWCNTs by a one-pot floating
catalyst chemical vapor deposition technique. These
flexible Ni/SWCNT films are heat-treated under an NH,
environment to dope carbon matrix with nitrogen atoms.
As shown in Fig.l1(a), the ultrafine nanoparticles are
entirely encapsulated by a single shell of carbon and well
attached on SWCNTs, which forms an interconnected
network. These Ni@N-C/SWCNT free-standing films
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Fig. 1: (a) Typical TEM image of the Ni@N-C/SWCNT films. (b) Photograph of an alkaline electrolyzer setup using self-standing
rods of Ni@N-C/SWCNT films as anode and cathode. (¢) LSV curves of Pt/C-Ir/C and Ni@N-C/SWCNT pairs on nickel foam in 1
M KOH solution for overall water splitting at a scan rate of 5 mV s

were used for bifunctional overall water splitting. A typical
film showed overpotentials of 190 mV and 270 mV to
reach a current density of 10 mA cm? for HER and OER,
respectively. When two free-standing Ni@N-C/SWCNT
rod shaped electrodes were used as anode and cathode for
overall water electrolysis, a current density of 10 mA cm?
was achieved at an applied potential of 1.57 V, showing

excellent electrocatalytic performance.

3.5.1.2 Controlled Synthesis and Properties
of Nanocrystalline Graphene and AB-stacked
Bilayer Graphene

Nanocrystallization is a well-known strategy to
dramatically tune the properties of materials, however,

the grain size effect of graphene at nanometer scale

remains unknown experimentally because of the lack of
nanocrystalline graphene samples. We report an ultrafast
growth of graphene films within a few seconds by
quenching a hot metal foil in liquid carbon source. Using Pt
foil and ethanol as examples, four kinds of nanocrystalline
graphene films with average grain sizes of ~3.6, 5.8, 8.0
and 10.3 nm are synthesized. It is found that the effect of
grain boundary becomes more pronounced at nanometer
scale. In comparison with pristine graphene, the 3.6-nm-
grained film retains high strength (101 GPa) and Young’s
modulus (576 GPa), while its electrical conductivity is
declined by over 100 times, showing semiconducting
behavior with a bandgap of ~50 meV. This liquid-phase
quenching method opens possibilities for ultrafast
synthesis of typical graphene materials and other two-

dimensional nanocrystalline materials.

—— CVD-grown AB-BLG
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Fig. 2: A wafer size AB-stacked bilayer graphene film and its electrical property.
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Large-area high-quality AB-stacked bilayer graphene
films are highly desired for the applications in electronics,
graphene with variable photonics and spintronics.
However, the existing growth methods can only produce
discontinuous bilayer stacking orders because of the non-
uniform surface and strong potential field of the solid
substrates used. We report the growth of wafer-scale
continuous uniform AB-stacked bilayer graphene films
on a specifically-designed liquid Pt,Si/solid Pt substrate
by chemical vapor deposition. The films show quality,
mechanical and electrical properties comparable to the
mechanically exfoliated samples. Growth mechanism
studies show that the second layer is grown underneath the
first layer by precipitation of carbon atoms from the solid
Pt, and the small energy requirements for the movements
of graphene nucleus on the liquid Pt.Si enables the
interlayer epitaxy to form energy-favorable AB-stacking.
This interlayer epitaxy also allows the growth of ABA-
stacked trilayer graphene and is applicable to other liquid/

solid substrates.

3.5.1.3 A Vertical Silicon-graphene-germanium
Transistor

In 1947, the first transistor, named a bipolar junction
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transistor (BJT), was invented in the Bell Laboratory and
has since led to the new age of information technology.
In the past decades, there has been a persistent demand
for higher frequency operation for a BJT, leading to the
inventions of new devices such as heterojunction bipolar
transistors (HBT) and hot electron transistors (HET).
The HBTs have achieved great development towards the
terahertz operation, however their cut-off frequency is
ultimately limited by the base transit time, while for the
HETs the demand of a thin base without pinholes and
with a low base resistance usually causes difficulties in
material selection and fabrication. Recently, graphene has
been proposed as a base material to form graphene-base
transistors (GBT). Because of the atomic thickness, the
graphene base is almost transparent to electron transport
leading to a negligible base transit time. At the same
time, the remarkably high carrier mobility of graphene
will benefit the base resistance compared with a thin bulk
material. So far, the GBTs generally use a tunnel emitter
which emits an electron through an insulator. However,
the emitter potential barrier height will limit the cut-off
frequency seriously. Theoretical study has indicated that a
Schottky emitter may solve this potential barrier limitation.

Here, we report a graphene-base transistor with a

Schottky emitter, i.e. a silicon-graphene-germanium
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Fig. 3: Schottky emitter of the Si-Gr-Ge transistor. (a) A typical [-V characteristic of the top Si-Gr emitter junction at room
temperature showing an obvious rectifying behavior. (b) Temperature-dependent characteristics of the current. An Arrhenius plot at
a voltage of 0.1 V gives a Schottky barrier height of 0.64 eV at room temperature. (¢) Comparison of the on-currents of graphene-
base transistors with different emitters. The Si-Gr Schottky emitter shows a current of 692 A cm® at 5 V. (d) Comparison of alpha
cut-off frequency of graphene-base transistors with different emitters. The one with the Si-Gr Schottky emitter shows the best cut-off

frequency of 1.2 GHz.
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transistor. Using semiconductor membrane and graphene
transfer, we stacked three materials including an n-type top
single-crystal Si membrane, a middle single-layer graphene
(Gr) and an n-type bottom Ge substrate. Compared with
the previous tunnel emitters, the on-current of the Si-Gr
Schottky emitter shows the maximum on-current and the
smallest capacitance, leading to a delay time more than
1,000 times shorter. Thus the alpha cut-off frequency of
the transistor is expected to increase from about 1 MHz
by using the previous tunnel emitters to above 1 GHz
by using the current Schottky emitter. THz operation is
expected using a compact model of an ideal device. With
further engineering, the vertical semiconductor-graphene-
semiconductor transistor is promising for high-speed
applications in future 3D monolithic integration because
of the advantages of the atomic thickness and high carrier
mobility of graphene, and the high feasibility of a Schottky
emitter.

3.5.1.4 Structure and Electrochemical Properties
of a Double Layer Formed at a Solid/Solid
Electrode Interface

Understanding the electric double layer is essential
to improve the electrochemical performance of related
devices. Conventional solid/liquid interfacial -electric

double layer often suffers from a narrow voltage window

and a serious self-discharge, which limits the energy
density and efficiency achieved. We construct a high ionic-
conducting and nanometer solid/solid electrode interface
by electrochemical coating with lithium difluoro (oxalate)
borate, which widens the stable potential window. Through
in-depth study on the formation and charge-transfer
mechanism of this solid/solid interface, we propose a novel
electric double-layer model and discuss its electrochemical
performance.

The solid/solid electric double-layer is formed with de-
solvated ions. Compared with a solid/liquid electric double
layer, due to the absence of solvent shell, there is a smaller
separation distance and stronger interaction between the
ions and surface. Therefore, the solid/solid electric double-
layer has an effect of capacitance enhancement. Through
characterizing and analyzing the self-discharge behaviors
of electrodes, we find that the self-discharge driven by ion
concentration gradients and potential can be effectively
restricted inside the solid/solid electric double-layers.
A dual-graphene lithium ion capacitor was constructed
by solid/solid interfacial electrode, which shows a high
energy density and power density coupling with long cycle
life and high energy efficiency. These studies will promote
the understanding of electric double-layer mechanisms in
organic systems and provide guidance for the design of
high-performances cells.
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Fig. 4: (a) Schematic of a traditional GLIC. (b) Schematic of a SS-GLIC. (c) Voltage drop and energy efficiency of a GLIC and
SS-GLIC during self-discharge tests after charging to 4.3 V. (d) Relationship of energy density and power density for various
electrochemical energy-storage systems. (¢) Cycling stability of a SS-GLIC in the range of 0-4.3 V.
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3.5.1.5 Homogenous Doping of Substitutional
Nitrogen/Carbon in TiO, Plates for Visible Light
Photocatalytic Water Oxidation

Doping can extend the light absorption range of wide-
bandgap photocatalysts into the visible light region, which
is significant in terms of fully harvesting and converting
solar light. The desirable band-to-band redshift of the
absorption edge of semiconducting binary metal oxides,
such as a prototypical photocatalyst TiO,, by doping is long
targeted but remains a challenge, up to date. Besides the
species of dopants, their spatially homogenous distribution
in materials for the indispensable long-range interaction of
the dopants with intrinsic bulk atoms is equally crucial
in enabling the bandgap narrowing (a desirable band-to-

band visible light absorption spectrum is formed in this

(a)
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situation). Here, by taking the advantage of abundant
1D diffusion channels with rhombus-like cross-sections
along the c-axis in the crystal structure of titanium oxalate
hydrate to promote the entrance of nitrogen dopant species
into the bulk and subsequent thermal topotactic transition
in an atmosphere of gaseous ammonia, homogeneous
doping of substitutional carbon/nitrogen for oxygen in the
TiO, decahedral plates with a dominant anatase phase is
obtained for the first time. The resultant TiOH(CN)y with
an unusual band-to-band visible light absorption spectrum
and enhanced electron transport ability can induce
photocatalytic water oxidation to release oxygen under
visible light irradiation. This study (Adv. Funct. Mater.
29 (2019) 1901943) provides not only a promising visible
light-responsive TiO, photocatalyst, but also an important

strategy for developing other solar-driven photocatalysts.
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Fig. 5: (a) UV-visible absorption spectra of three TiO, samples (the TiO, (CN), with the homogeneous doping of nitrogen and
carbon, the TiO, (CN), with the nonhomogeneous doping of nitrogen and carbon (denoted as TiO, ,(CN),-ref.) prepared by heating
the TiO, ((CN), sample in air and the undoped TiO, sample prepared by the thermal topotactic transition of titanium oxalate hydrate
in air). (b) I-V curves measured from a single particle of TiO, ((CN), or TiO,. The inset is the schematic of using two tungsten probes
as electrodes to contact a particle to record its [-V curve, which was performed in a scanning electron microscope.
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3.6 Biological Material and Biomimetic Architecture
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3.6.1 Summary of Scientific Activities

Developed cellulose element crystals (CECs) as the support for Pd catalysts. Pd atoms close to 0 valence are fixed in
situ on a specific crystal plane with a low coordination number, and a kind of Pd-CECs monoatomic catalyst with high

activity and high stability.

The porous electromagnetic absorbing metamaterials with excellent environmental adaptability and reliability are
designed and fabricated. The porous absorbing materials as prepared have lightweight, broadband and adaptability to
extreme-environment, which widens application of absorbing materials in electromagnetic field.

Developed spiral extrusion microwave reactor by adopting the rectangular microwave multi-mode traveling wave
design. A continuous microwave reaction system including control system, screw extruder microwave reactor, feeder,
screw rotation control system, raw material tank and product tank is established. The continuous microwave reaction
system overcomes the problem of insufficient microwave effective penetration depth of the traditional reactor. The
microwave energy can be absorbed and utilized uniformly and effectively by the reactants. At the same time, the reaction
can be carried out continuously, and it is easy to control the reaction parameters, optimize the experimental process,

which is very suitable for industry application.

Takes the structural design of catalyst support materials as a breakthrough, the specific surface area is increased
by growing nano-silicon carbide whiskers on the surface of a porous silicon carbide support; the in-situ hydrothermal
synthesis technology grows nano-array transition metal oxides on the surface of silicon carbide whiskers to further
increase the catalyst. The results show that the in-situ growth of silicon carbide whiskers with foamed silicon carbide
significantly increases the catalyst loading and exposes the characteristic active crystal plane, showing good catalytic

activity and hydrothermal stability.

Develop the properity of MgAIB series of aluminum-based burners. Based on the energy release promoted from H
to Mg, Al and B, a higher amount of amorphous B powder was added to the preparation process. The theoretical energy
level of the burner powders is severely improved, and the energy releases of Al and B are promised. Thus, the energy

level could greatly increased in the underwater application.

3.6.1.1 Extreme-environment-resistant,
Lightweight and Broadband Porous
Electromagnetic Wave Absorbing Material

In the civilian field, electromagnetic wave absorbing
materials are widely used. And in some case, the
absorbing materials require to work in an environment
with high temperature, super-low temperature, ablation
and strong jounce. It is necessary to devote to the research
lightweight

broadband electromagnetic wave absorbing materials.

on Extreme-environment-resistant, and
The porous materials are obtained by replica method and
slurry foaming method, and have excellent environmental
adaptability and reliability. The electromagnetic absorbing
metamaterial bases on porous material and design of
metamaterial. By simulation design of multi-scale structure
and different materials, some kinds of electromagnetic

absorbing metamaterial are prepared. The lightweight and

broadband microwave absorbing composites are prepared
by adding dielectric loss materials, magnetic loss materials
into bismaleimide porous as a matrix. The bismaleimide
porous absorbing composites have a quite low bulk density
below 0.3 g/cm?®, and have excellent absorbing properties
covering the frequency of 0.5 GHz~18 GHz. Furthermore,
these absorbing composites could work in the environment
with different temperature (-50 C~150C) and strong
jounce. The high-temperature-resistant (800 C ~1500C)
and ablation-resistant absorbing material are developed by
using open cell or closed cell SiC porous materials. The
SiC porous materials have a low bulk density about 0.5 g/
cm?, and exhibit excellent absorbing properties from 1.5
GHz to 18 GHz with slotted design. The bulk density of the
carbon porous absorbing material is about 0.45 g/cm?®. This
absorbing material is suitable for super-low temperature

environment (-190 C).
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Fig. 1: (a) The picture and absorption property of the bismaleimide porous absorbing material; (b) The picture and absorption
property of the SiC porous material; (c) The picture and absorption property of microwave dark-room chest using the carbon porous

material.

3.6.1.2 Continuous Screw Extrusion Microwave
Reaction System

Reaction process strengthening is the core part of
chemical process strengthening. Microwave strengthening
technology can greatly improve the reaction rate,
improve the selectivity of target products, significantly
reduce pollution and achieve the goal of reaction process
strengthening by using the interaction between microwave
and dipole or charged particles in the reaction system and
the selective heating effect of microwave on materials.
Aiming at the common problems of reaction system with

high viscosity and high corrosion reaction liquid, we

successfully developed spiral extrusion microwave reactor
by adopting the rectangular microwave multi-mode
traveling wave design. The outer side of the reactor is a
rectangular shielding box, and the center of the reactor is a
wave permeable column container. A screw is installed in
the column container, and the reactants pass through the
screw's spiral groove continuously. The electromagnetic
field spreads around the column container located in the
center, and is absorbed by the reactants passing through
the screw in the column container, generating "internal
friction heat" and raise the temperature rapidly to
complete the chemical reaction. A continuous microwave

reaction system including control system, screw extruder

Fig. 2: Continuous Screw Extrusion Microwave Reaction System.
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Fig. 3: (a) pore structure distribution of cobalt manganese oxides structured catalyst, (al), (a2) cross-sectional morphology of cobalt
manganese oxides, (a3) picture of cobalt manganese oxide structured catalysts, (b) Comparison of catalytic activity of the three
catalysts, (c) Hydrothermal stability of nano-array cobalt-manganese oxide structured catalyst.

microwave reactor, feeder, screw rotation control system,
raw material tank and product tank is established. The
continuous microwave reaction system overcomes the
problem of insufficient microwave effective penetration
depth of the traditional reactor. The microwave energy
can be absorbed and utilized uniformly and effectively by
the reactants. At the same time, the reaction can be carried
out continuously, and it is easy to control the reaction
parameters, optimize the experimental process, and meet
the needs of continuous and automatic control. Therefore,

it has a good industrial application prospect.

3.6.1.3 Nano-array Structured Catalysts

The original intention of structured catalyst design is
to achieve the best catalytic efficiency per unit volume of
catalyst through the combination of catalyst design and
reactor design through the selection of catalyst support
materials, structural design and optimization of catalyst
active components. However, the structured -catalyst
prepared based on the macroscopic porous catalyst carrier
and coating method has the problems of irrational flow
field and low catalyst utilization rate, which limits its
performance.

This work increases the specific surface area by
growing nano-silicon carbide whiskers on the surface of
a porous silicon carbide support; the in-situ hydrothermal
synthesis technology grows nano-array transition metal
oxides on the surface of silicon carbide whiskers to further
increase the catalyst utilization rate; VOCs combustion
was used as a probe reaction to evaluate catalytic
performance. The results show that the in-situ growth

of silicon carbide whiskers with foamed silicon carbide

i 4

significantly increases the catalyst loading and exposes the
characteristic active crystal plane, showing good catalytic

activity and hydrothermal stability.

3.6.1.4 Preparation and Application of Aluminum-
based Hydrogen Storage Composite Burner

It is one of the important methods for the improvement
of the energy level of applications by the addition of metal
fuels such as aluminum powders and etc.. Due to the
limitation of the inherent properties, the aluminum powder
is difficult to meet the development of further improving
the performance. It’s necessary to find new metal burners
with high energy level, efficiently energy release, safety
and could be appropriate for application.

The aluminum-based hydrogen storage composite
burner developed is assembled of aluminum and other
composite such as MgH,, B powder and etc., and could be

used in AFE, TBA and propel etc. The experiment results

show that the agglomeration of aluminum particles during

Y

Fig. 4 : SEM image of Aluminum-based Hydrogen Storage
Composite Burner (MgAIB series).
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the combustion process could be greatly reduced, and
the energy release efficiency of aluminum-based burner
could be greatly improved due to the fine combustion of
aluminum.

According to the characteristics of the energy release,
we focused on the fabrication and test of MgAIB series
of aluminum-based burners. Based on the energy release
promoted from H to Mg, Al and B, a higher amount of

amorphous B powder was added in the preparation

- i 4

process. The theoretical energy level of the burner powders
is severely improved, and the energy releases of Al and B
are promised.

Through the test, the composition and performance
optimization of MgAIB burner were completed, and the
relationship between the key process parameters and
performance was explored, which could support the further

research on the amplification preparation technology.
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3.7 Functional Materials and Devices Division

DIVISION HEAD: ZHANG Zhidong
RESEARCH GROUP LEADERS: (4)

LIU Wei (Exchange Coupling and Magnetoelectric Coupling in Functional Films)
WANG Zhenhua (Topological Insulators Nanostructures and Devices)

LI Bing (Neutron Scattering Study of Magnetic Phase Transitions)

HU Weijin (Ferroelectric Thin Films and Devices)
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3.7.1 Summary of Scientific Activities

The research directions of our division are: Exchange coupling and magneto-electric coupling in functional films;
Topological insulators nanostructures and devices; Neutron scattering study of magnetic phase transitions; Ferroelectric
thin films and devices. The research interest is focused on physical (sych as magnetic, electronic, optical, thermal, etc.)
properties of materials and the transfer between the different energies. We are also interested in studying different types
of phase transitions in functional materials, for instance, structural phase transitions, magnetic phase transitions and
topological phase transitions.The aim is to discover new topological magnetic materials, magnetoresistance materials,
electromagnetic wave absorption materials, magneto-elastic materials and colossal barocaloric materials and so on. We
realize the growth of functional materials thin films, heterostructures and nano-devices, in order to investigate low-
dimensional quantum characters and nanocomposite coupling effects in functional materials and to realize the controllable
quantum transports, controllable magneto-electro-optical properties, controllable interfacial effects and controllable
topological states.

In 2019, a breakthrough is the discovery of colossal barocaloric effects in plastic crystals, which will have potential
applications in solid refrigeration. There are some advances in oxygen-valve formed in cobaltite-based heterostructures
by ionic liquid and ferroelectric dual-gating, interface effect of ultrathin W layer on spin-orbit torque in Ta/W/CoFeB
multilayers, modulation of spin-orbit-torque-induced magnetization switching in Pt/CoFe through oxide interlayers, low-
field formation of room-temperature biskyrmions in centrosymmetric MnPdGa magnet, topological phase transition and
highly tunable topological transport in topological crystalline insulator Pb,_ Sn Te (111) thin films. There are also some
progresses in the following topics: New two-dimensional phase of tin chalcogenides: candidates for high-performance
thermoelectric materials, Observation of interfacial antiferromagnetic coupling between magnetic topological insulator
and antiferromagnetic insulator, Magnetic-field control of topological electronic response near room temperature in
correlated Kagome magnets, Strain-induced cluster glass state in LaMnO, films, Transition of the exchange bias effect

from in-plane to out-of-plane in La,_Sr, MnO,:NiO nanocomposite thin films, and so on.

In total, 47 papers have been published in international journals in 2019.

3.7.1.1 Modulation of Spin-orbit Torque Through
Interface Effect

The rapid development of information technology puts
higher demands on the storage density, read/write speed
and stability of the memory. To meet these demanding
requirements, the spin-orbit torque (SOT) has been studied
in recent years. For the practical application of SOT related
devices, one needs to consider the current-spin current
conversion efficiency of the spin-orbit coupling layer, the
perpendicular magnetic anisotropy of the magnetic layer,
the compatibility with the semiconductor annealing process,
the tunnel magnetoresistance and so on. There are many
interface-related effects in heavy metal/ferromagnetic/
oxide multilayer films, such as perpendicular magnetic
anisotropy, spin pass rate, Dzyaloshinskii-Moriya (DM)
interaction, all of which are important for SOT devices.

We introduced ultra-thin W intercalation at the Ta /

100 w

CoFeB interface and NiO intercalation at the Pt / CoFe
interface to study the influence of the interface on the
spin-orbit torque efficiency and the process of magnetic
domain inversion. It is clear that each interlayer enhances
the spin hall angle of the respective systems by increasing
the interface spin pass rate, and each interlayer also
reduces the external magnetic field required for current-
induced magnetization inversion. The magneto-optic Kerr
microscope is used to study the process of current-induced
magnetization reversal, and it is confirmed that the DM
interaction field determines the minimum external field of
SOT-induced magnetization reversal. In addition, we have
realized the magnetization inversion of the double oxide
free layer by using SOT, which provides an experimental
basis for the effective combination of SOT devices and the
current high-density magnetic tunnel junctions. The results
show that modulating SOT based on interface effects is

feasible and effective. Related works are published in

SYNL



SYNL 2019 & k% (ANNUAL REPORT)

a
() 2.0} —=+20000e —= +1000e ~— 00e -4mA §Y
1.5 Pt a (!J—5
1.0 =
€ os
-1.0
-20-1510-5 0 5 101520 -_16
1(mA)
e
O | o )N
s ol
& 03
= 0.0
-1.0 +17
-15
1(mA)
©) 2y O VR
1.5
< 05
-0.5
20-1510-5 0 5 101520
o) B -

Fig. 1: Current-induced switching for Pt(5S nm)/CoFe(1 nm)/
MgO(2 nm) (sample Pt), Pt(5 nm)/MgO (1 nm)/CoFe(1 nm)/
MgO(2 nm) (sample MgO) and Pt(5 nm)/NiO(1nm)/CoFe(1
nm)/MgO(2 nm) (sample NiO). Current-induced switching for
various in-plane field H, for sample Pt (a), sample MgO (b) and
sample NiO (c). Kerr images after various current pulses during
the switching process at H, = £2000 Oe (d), +100 Oe (e) and 0
Oe (f) for sample Pt, at H, = +25 Oe for sample MgO (g) and
sample NiO (h).

Appl. Phys. Lett. 114 (2019) 082402 and Appl. Phys. Lett.
114 (2019) 212404.

3.7.1.2 Topological Phase Transition and Highly
Tunable Topological Transport in Topological
Crystalline Insulator Pb, Sn Te (111) Thin Films

Topological crystalline insulators (TCls) are a type
of novel topological material whose topological surface
states (TSSs) are protected by the crystalline mirror
symmetries. Different from topological insulators (TIs)
with one Dirac cone on one surface, the TCIs have multiply
Dirac surface states on one surface, thus, giving rise to the
highly tunability of the TSSs. Theoretically, TCI’s TSSs
are predicted to have many unique quantum phenomena,
such as surface spin filtering, strain-induced Dirac point
shift and Van-Hove singularity. To achieve the exotic
properties, controlling the Dirac gap open and topological
phase transition is of great importance to the application
of TCIs. Although the tunability of the TSSs in Pb,

Sn Te (111) system was revealed by the angle-resolved

photoemission spectroscopy (ARPES), the transport study
for its topological phase transition and magnetotransport
behavior has not been reported in the transport studies. The
modulation of topological phase transition in Pb,_Sn Te
(111) film system through transport characterization is
expected to be explored, because the real application of
topological materials in future electronic device is finally

decided by its transport behavior.

3.7.1.3 Low-field Formation of Room-Temperature
Biskyrmions in MnPdGa Magnet

Explosive increase of information in our modern
society makes the urge need of new information storage
technology. Magnetic skyrmions, a kind of localized spin
textures topologically protected in magnetic materials,
are highlighted as potential information carriers for high-
density magnetic storage devices. Usually the skyrmions
were found in chiral magnets which host skyrmions in
low temperature. For technological applications, the
stabilization of skyrmions in a temperature range around
room temperature is essential. Here, we demonstrate the
formation of magnetic biskyrmions in a low magnetic
field at room temperature in centrosymmetric hexagonal
MnPdGa magnet via Lorentz transmission electron

microscopy in combination with transport and magnetic

(a)%® (b) ray— !
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Fig. 2: The magnetic field dependence of Hall resistance R, (B)
for Pb,Sn,Te thin films (x=0.2, 0.4, 0.7 and 1.0) at 2K. (b) The
carrier (holes) density and mobility of Pb, Sn,Te (111) (x=0.2,
0.4, 0.7 and 1.0) at 2K. (c) The schematic diagram on the change
of band structure and E F with the Sn content.
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Fig. 3: Magnetic phase diagram of bulk polycrystalline MnPdGa. (a) Temperature dependence of the normalized AC susceptibility
on applied magnetic field (shifted vertically by a step of 0.1 for clarity). The dotted lines indicate the three critical fields shown in
panel (b). As shown in the inset, the first derivative of the susceptibility shows three kinks, indicating the transformation of magnetic
states: helical (H) or spin-canted (C), biskyrmion lattice (SkX) and field-induced spin-collinear ferromagnetic (FM). (b) Field-
temperature phase diagram based on the topological Hall resistivity and the AC susceptibility.

measurements. High-density biskyrmions are generated at  3.7.1.4 Oxygen-Valve Formed in Cobaltite-Based
Heterostructures by lonic Liquid and Ferroelectric

Dual-Gating

300 K in a magnetic field of 0.15 T. A large topological
Hall resistivity is observed near room temperature under

low field. Furthermore, a wide temperature and magnetic-

field window for biskyrmions is deduced from transport
and AC magnetic susceptibility results. The simultaneous
features of high density and low magnetic field near
room temperature in a single-component material make
MnPdGa a promising candidate for future skyrmion-based

topological spintronics applications.

Conventional valves, which control the direction,
pressure, and flow of a fluid (liquid, gas, powder) in a
fluid system in macroscale, provide a fundamental role in
our daily life. Nevertheless, with the urgent requirement
for miniaturization and low power consumption of the

devices in semiconductor industry, designing the voltage-
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Fig. 4: Magnetic and electrical transport properties of three heterostructures. (a) In-plane magnetic hysteresis loops at 10 K for
B-SCO (18 nm), STO (4 nm)/P-SCO (18 nm) and BTO (4 nm)/M-SCO (18 nm) heterostructures. (b) Temperature dependent
magnetization curves with field cooling, at a magnetic field strength of 1 kOe for three SCO-based heterostructures. (c) Temperature
dependence of electrical resistance of three SCO-based heterostructures. (d) Strongly coupled magnetoelectric effect in multivalent
strontium cobaltites films under different temperature regions and resistance values. Red and light green arrows represent negative
and positive gate voltages, respectively. The proton of oxygen ion is marked side of arrows. The ionic valences of Co ions and
the compositions of strontium cobaltites films are also involved inside the figure. PM, FM, and AFM represent paramagnetism,
ferromagnetism, and antiferromagnetism, respectively.
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actuated valve for controlling charge flow and electrical
behavior on atomic scale is quite important nowadays.
Here we report that via a combination of ionic liquid and
ferroelectric gating, the remote control of oxygen vacancies
and magnetic phase transition at room temperature can
be achieved in SrCoO, , films capped with an ultrathin
ferroelectric BaTiO, layer. The ultrathin BaTiO, layer
acts as an atomic oxygen valve and is semitransparent to
oxygen ions transport due to the competing interaction

between vertical electron tunneling and ferroelectric

polarization plus surface electrochemical changes in itself,
thus resulting in the striking emergence of new SrCoO_
mixed-phase. The lateral coexistence of brownmillerite
phase SrCoO, , and perovskite phase SrCoO, ; was directly
observed by transmission electron microscopy. Besides the
fundamental significance of long-range interaction in ionic
liquid gating, the ability to control the flow of oxygen ions
across the heterointerface by the oxygen-valve provides a
new approach on the atomic scale for designing multi-state

memories, sensors, and solid-oxide fuel cells.
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3.8 Advanced Steel Materials Division
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DIVISION HEAD: LI Dianzhong
RESEARCH GROUP LEADERS: (4)

WANG Pei (Special Steels)

FU Paixian (Heavy Special Steels Castings and Forgings)
LU Shanping (Special Welding Materials)

LI Dianzhong (Material Design of the Lower Cost Steel with Light and Micro-alloying Elements)
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3.8.1 Summary of Scientific Activities

The current focus of our dvision includes special steels, heavy special steels castings and forgings, special
welding materials, and material design of the lower cost steel with light and micro-alloying elements.

In the past year of 2019, the main work focuses on the development of new special steels and key technologies
encountered in the manufacture of special steel components. We have carried out the investigation on tracking
of carbon segregation in heavy nuclear forgings, designing new special steel and manufacturing technologies for
an important equipment, developing RE-added heat resistant steel, and special welding materials and mechanical
properties of welded joint, at the same time, we have continue the research and industry application of RE-added
bearing steel and additive forging technology.

We clarified the mechanism behind the excellent fatigue properties of RE-added bearing steel. It is found that the
modification of inclusions by RE delays the formation of FGA zone in fatigue testing, which extends the fatigue
life of bearing steel. The prolonged fatigue life of RE-added bearing steel provides a substantial support to the
manufacture of high-performance bearings. The RE-added steels have been widely used in China, and promotes a
Strategic Priority Research Program of CAS.

The heat resistant steels containing small content of the nickel with lower cost and long service life, named
CNRE, are developed by microalloying the RE element with carbon and nitrogen. And a great number of heart
rollers and radiant tubes made of these CNRE steels have been serving up to 1150°C for long term in industrial
furnaces.

Using our novel additive forging technology, an austenitic stainless steel supporting ring with the world's largest
diameter (15.6 meters) and the largest weight (150 tons) was successfully manufactured in 2019. The research
results were widely reported and highly praised in the industry.

By combining the multiscale in-situ experiments and crystal plasticity simulations using models based on
dislocation density evolution, we clarify the influence of microscale stress/strain partitioning on the macroscale
mechanical properties, and design a new martensitic steel with high strength and high ductility simultaneously used

in an important component.

We carried out the investigation on the elevated temperature fracture behavior and the delta ferrite affection on
the microstructure and mechanical properties of austenitic steel weld metal, as well as the relationship between the
microstructure and mechanical properties of the weld joint of high strength marine steel. And we designed some
kinds of special weld materials used in SFR reactor, container of high-level nuclear waste glass, and high strength
marine steel. All of them are used in industrial application.

3.8.1.1 A Multi-scale Study on the Heterogeneous
Deformation Behavior in a Duplex Stainless Steel

The heterogeneous deformation behavior in a 2205
duplex stainless steel has been multi-scaled studied via
the combination of in situ high energy X-ray diffraction,
microscopic digital image correlation, electron backscatter
diffraction, and transmission electron microscope
observation. On the macroscopic level, the difference in the

yielding behaviors of between austenite and ferrite causes

i 4

the heterogeneous deformation behavior in the material.
By further analyses on the mesoscopic scale, the yield
behaviors of austenite and ferrite are asynchronous within
each grain. The areas near the boundaries are the first part
to deform plastically. This can, furthermore, cause the
deformation gradient in the microstructure. The former
phenomenon can be explained by the various dislocation
behaviors between the phases and the impeded effect of
boundaries on the dislocations on the microscopic scale.

The heterogeneous deformation behavior causes lattice
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rotation during the deformation process. More important,
when we optimize the volume fraction of constituent phase
properly, the initial softer phase, austenite, becomes the
harder phase during deformation, which causes dynamic
strain and stress partitioning between the austenite and

ferrite at different deformation stages. Strain and stress

during the uniform deformation stage, which can lead to
homogeneous deformation and simultaneously enhance
the elongation and tensile strength. This research provides
a new idea on the method of the deformation mechanism
study as well as a more detailed explanation of the

heterogeneous deformation behaviors in a duplex stainless

partitioning between the constituent phases change  steel.
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Fig. 1: The lattice strain of different planes of austenite and ferrite as a function of the applied stress.

3.8.1.2 Investigation on the Elevated Temperature
Fracture Behaviors of Fe-25Cr-20Ni Austenitic
Steel Weld Metal for the Container of High-level
Nuclear Waste Glass

Heat resisting Fe-25Cr-20Ni austenitic steel weld
material is regarded as a competitive candidate alloy for
the container of high-level nuclear waste glass owing to its
outstanding resistance to elevated temperature oxidation,
creep and corrosion. The container with a thin wall will
experience hot impact up to 1100 C during the process
of filled with high-level nuclear waste glass, which gives
a huge challenge to the performance of the Fe-25Cr-20Ni
weld metal. Austenitic alloys generally suffer from a
reduction both in strength and plasticity with the increase
of temperature, which is detrimental to the service of the
container and the security of nuclear waste. The elevated
temperature properties of the candidate welding materials
have been investigated and the results indicate that the
strength and elongation of the Fe-25Cr-20Ni weld metal
experience a rapid decline at the temperature range from
700 C to 1000 C. The phenomenon is attributed to the
transformation of the deformation behaviors of weld metal
at elevated temperature. The occurrence of the intergranular
brittle fracture promotes the premature fracture of weld

metal. Moreover, the addition of the stabilizing elemental

110

%

Nb can cause the precipitation of the eutectic Nb(C, N)
in the weld metal, which can hinder the motion of the
grain boundaries during the solidification process of
weld metal and then make the grain boundaries become
tortuous. Compared with the straight grain boundaries, the
tortuous grain boundaries have more excellent resistance
to sliding. The Nb-bearing weld metal will fracture by an
intragranular ductile fracture instead of an intergranular
brittle fracture and then possess a higher plasticity at
elevated temperature. Meanwhile, compared with that of
Nb-free weld metal, the strength of the Nb-bearing Fe-
25Cr-20Ni weld metal is increased approximately 50% at

QNI ®

C\ L\

Fig. 2: Morphologies of the grain boundary in (a) Nb-free and (b)
Nb-bearing weld metals, tensile fracture surfaces of (c) Nb-free
and (d) Nb-bearing weld metals at 900 C.
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1000 C because of the strengthening effect of the solution
Nb and eutectic Nb(C, N).

3.8.1.3 The Prediction, Tracking and Controlling
of Carbon Segregation of Heavy Nuclear Forging
via Numerical Simulation Technique

Carbon segregation is the most typical defect of heavy
steel ingots in the field of nuclear power worldwide.
Recently, it has been widely detected in the forging used
in the nuclear island equipment during the maintenance
period in France, USA and China. Due to the large size
of steel ingot and its long solidification time, the material
utilization is less than 60 percent currently, caused mainly
by the severe chemical heterogeneity, and even the whole
ingot is scrapped. Hence, it is critically significant to carry
out the track, prediction and control of carbon segregation
of heavy forgings based on the numerical simulation
technique.

We have accomplished the data transfer and carbon
segregation prediction of heavy steel forging during the
entire process from multi-ladle pouring, solidification
to forging. By tracking the segregation evolution, the
key forging parameters such as punching dimension
was accurately calculated and, the simulation solution
successfully guaranteed the uniform carbon distribution
(£0.015 wt%) of 480-ton heavy ingots to produce the high-
quality nuclear-level forgings. Besides the application in

the fabrication of the above heavy forgings domestically,
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our self-developed Euler-Lagrange segregation model
and procedure has been applied to distinguish the origin
of carbon segregation determined in the nuclear forgings
in serve in France. Its formation mechanism and factors
in the heavy steel ingots has been elucidated in detail,
accordingly the critical oxygen content to produce the
homogenized steels is surprisingly found for the first time.
Meanwhile, the solution to control the carbon segregation
is also provided based on the numerous simulations. It
shows that, there are two typical segregation types in the
heavy steel forgings, the top positive segregation and the
A-type channel segregation distributed at two sides of
ingot body. The positive segregation is mainly caused by
the temperature transport, and the poor riser design can
induce the unreasonable distribution of temperature field.
For instance, the carbon segregation severity will become
two times larger when the pouring height in the top is
insufficient. Yet, the root cause of channel segregation
is totally different from the positive segregation, and it
is ascribed to the high impurities such as oxygen. When
oxygen content is very high, the forming oxide cluster
disturbs the local flow and destabilizes the mushy zone,
consequently triggering the onset of channel segregation.
Excitingly, this study extensively bridges the cleanliness
and homogenization of steels. The novel mechanism and
segregation model makes it possible, for the first time, to

reproduce the channel segregation in heavy steel ingots

above one hundred ton.
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Fig. 3: The application of segregation simulation technique covering the entire process from multi-ladle pouring, solidification to

forging.
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3.9.1 Summary of Scientific Activities

Studies mainly focus on effective and economical computation- and data-driven tools, discoveries and composition-
structure-property elaborations of high-performance structural alloys and novel quantum materials in combination with
advanced tools of high-throughput computation, big data, and machine learning as well as artificial intelligence. In
particular, we emphasize the computation-guided experimental verifications. The mission is to solve the crucial issues of
multiscale computational design of high-performance materials and to advance the frontier of Computational Materials

Science.

In 2019, based on our previous work, we have further made lots of new progresses in several aspects: We have
demonstrated that the underlying Dirac nodal line triggers the anomalously large electron-phonon coupling enhancement
of Be (0001), the presence of massive Dirac points in $-W, and a series of important progresses of topological phonon
materials, including the WC-type TiS family Weyl phonon compound and the topological phonon nodal lines in MgB, as
well as topological phonons in graphene. In addition, we have developed a software to design and calculate topological
materials with high throughput manner.

We have developed the studies of the first-principles modelling of electrochemical corrosion. Firstly, the mechanism of
the influence of common twin boundaries in magnesium alloys on its electrochemical corrosion was first studied by using
the first-principles calculation model of anode dissolution in metal electrochemical corrosion proposed earlier. Then we
continued to develop the first-principles calculation modelling of the typical cathodic hydrogen evolution reaction, so as
to complete the calculation model of the electrochemical corrosion of metals and alloys. The exchange current density
values of the hydrogen evolution reactions on different metal surfaces calculated using this model are in good agreement
with the experimental results, which proves the reliability of the model. Combining both the calculation modellings
of anodic dissolution and hydrogen evolution reaction, we further studied the electrochemical corrosion behavior of
different crystal planes of pure magnesium and the influence of different alloy elements on the corrosion of magnesium
alloys.

Through liquid and disordered alloys, we have studies four aspects: (i) We have simulated the local structural dynamics
of the U-Nb and U-Ti liquid alloys, the thermodynamic and dynamical data of the U-Nb and U-Ti liquid alloys, and the
local structural evolution of both the alloys was revealed, respectively. (ii) We studied the electronic band structures of
a metastable fully disordered BCC-type Fe2V0.8W0.2Al alloy and revealed the presence of disordered structure and
possible Weyl fermions to be beneficial to its thermoelectric performance. (iii) The structure searching on the U-O-Fe-
Zr system has been performed through first-principles calculations and some novel phases were found. Furthermore,
their thermodynamic properties, mechanical properties and electronic properties have been discussed in details. (iv)
Using first-principles combined with Cluster-Expansion method and Monte-Carlo technique, the phase stability and
segregations of Ni-based superalloy was studied. We predicted the possible structures of Ni-Al alloys at 0 K, and derived
the phase diagram of Ni-Al binary alloy.

In the mesoscale, studies are oriented on the development of the numerical models and computing methods to simulate
the evolution of polycrystalline growth and microsegregation during solidification. Based on the established high efficient
phase-field model with nonlinear precondition treatment and the elaborated parallel computing program of the adaptive
finite element method in 2D and 3D, the quantitative difference of dendritic growth in 2D and 3D phase-field simulations
with coupling of melt flow has been clarified in depth. A multiphysics phase-field model incorporation with liquid flowand
foreign particles has been established. And then the motion of solid inclusions in steel melt and their interactions with
liquid flow and dendritic growth are revealed through numerical simulations, which primarily illustrates the initiation
mechanism of channel segregation in steel ingots. Besides, an anomalous initial crystal growth kinetic whose behavior
goes far beyond the concept described by classical crystal growth theory is found in terms of the quantitative phase-field
simulations and real-time observations of Al-Cu alloys.
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3.9.1.1 Topological Dirac nodal line triggers the
anomalously large electron-phonon coupling
strength on a Be (0001) surface

The electron-phonon coupling (EPC) is a fundamental
phenomenon in materials and it plays an important
the
band structures and transport properties. In 1990s, the

role on finite-temperature-dependent electronic
anomalously large EPC strength on Be (0001) surface was
reported to be as high as 0.85 to 1.25, attracting extensive
attentions. However, to date its physical mechanism of
such phenomenon still remains unclear.

On basis of our previous discovery on topological
Dirac nodal lines in Beryllium (Phy. Rev. Lett. 117 (2016)
094401), we have further developed a high-precision
first-principles calculations on the EPC. Significantly,
we have corrected the computational errors of the crucial
Eliashberg coupling function (ECF) in the early studies.
Furthermore, we have decomposed the ECF as a function
of each electron momentum, each phonon momentum, and
each phonon vibration mode to illustrate the contribution
of each electron and each phonon on the surface EPC of the
Be (0001) surface. In combination with the distribution of
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topological states at the electronic momentum of lattice,we
have clarified that the topological states coupling with
phonon states significantly contribute over 80% of the total
EPC strength on Be (0001). The results reveal the strong
EPC of the Be (0001) surface is mainly induced by the
topological Dirac-nodal-line induced drumhead-like non-
trivial surface states. The presence of the drumhead-like
surface states at the Fermi level results in a highly localized
and high electronic states, which triggers a large EPC.
Twin boundaries play a critical role in controlling
mechanical properties of Mg alloys. Thus, it is essential
to have in-depth understandings of their structure and
chemical compositions. Periodic segregation of solute
atoms in twin boundaries has been reported, and many
studies have revealed, by both experimental observation
and computational simulation, that such segregation can
retard the motion of twin boundaries and thus strengthen the
alloys. However, these existing studies on such segregation
behavior mainly focused on binary Mg alloys, where the
only one alloying element can be readily determined by
HAADF-STEM images. But many commercial Mg alloys
usually have a combination of several alloying elements.

The segregation behavior in twin boundaries in such.
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Fig. 1: ECF and EPC strength at the K point. (a) shows the total EPC strength of each phonon band and the EPC strength contributed
by the Dirac node line induced surface state (DNSS) at the K point. The red point is the total EPC strength, and the blue point is the
DNSS contributed EPC strength; (b) is the 3D picture of the ECF on first phonon band in BZ, at the K point. The anisotropy of EPC
can be observed; (c) shows the EPC strength along different directions; (d) is the Fermi surface of the 16-atom layer film; (e) to (m)

show the ECF in BZ of several phonon bands.
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3.10.1 B T1EER
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3.10 Light Metal Materials Division

DIVISION HEAD: HUANG Xiaoxu
RESEARCH GROUP LEADERS: (4)

HUANG Xiaoxu (Strengthening and Toughening Mechanism)
LIU Qing (Deformation Mechanism and Microstructure Control)
WANG Jingfeng (Advanced Light Metals and Applications)
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3.10.1 Summary of Scientific Activities

This division aims at proposing and solving important scientific problems in the field of light metal material technology,
for supporting the national defense and economy development. We focus on phase transformation mechanism and
alloy design, deformation mechanism and microstructure control, mechanical behavior and toughening mechanism,
advanced light metal materials and applications, and development of advanced characterization technologies. The main

achievements of this division in 2019 are as following:

(1) Atomic-resolution EDS maps of segregated solute atoms in twin boundaries in a commercial QE22 alloy were
successfully acquired. A new pattern of solute segregation in twin boundaries was observed. The segregation of specific
solutes switches the migration mechanism of the twin boundary from the commonly accepted mode to a new one.. This
work demonstrates that the atomic-scale analysis of the distribution of alloying element atoms is now possible by using

atomic-resolution EDS, which will greatly promote the development of light alloys and other engineering materials.

(2) Samples of Mg-3Gd (wt. %) were prepared by accumulative roll-bonding (ARB) followed by annealing at different
temperatures to produce samples with different grain sizes. The microstructure evolution of Mg-3Gd alloy during ARB
and annealing were investigated, and the effects of grain size on mechanical behavior and deformation mechanism were
systematically studied. With microstructure parameters quantified, the strengthening and toughening mechanism of Mg-

3Gd alloy was revealed, and a quantitative model of strength and microstructure was proposed.

(3) The models and parameters to describe the crystallographic orientation effect on grain-boundary strengthening are
built and incorporated into the equation to calculate Hall-Petch slope. A new equation which can predict well the texture
effect on grain-boundary strengthening of hcp metals is developed. The results make a substantial advance in Hall-Petch

theory.

(4) The deformation mechanism of self-assembled three-dimensional nanoporous graphene for supercapacitor was
in situ studied. It was found that the microstructure of self-assembled three-dimensional nanoporous graphene could be
changed by heat treatment, from flexible network to rigid network. Correspondingly, it could also be changed from plastic

deformation to pseudoelastic deformation.

(5) A composite Schmid factor (CSF), which incorporates the external stress and the local shear stress, is proposed to
better explain the stress or strain transfer of twin-twin and twin-slip. This work provides a new way to develop the grain-

boundary strengthening model for hexagonal metals.

3.10.1.1 Direct Observation and Impact of Co-
segregated Atoms in Magnesium Having Multiple
Alloying Elements

Twin boundaries play a critical role in controlling
mechanical properties of Mg alloys. Thus, it is essential
to have in-depth understandings of their structure and
chemical compositions. Periodic segregation of solute
atoms in twin boundaries has been reported, and many
studies have revealed, by both experimental observation
and computational simulation, that such segregation can
retard the motion of twin boundaries and thus strengthen the
alloys. However, these existing studies on such segregation

behavior mainly focused on binary Mg alloys, where the

124 w

only one alloying element can be readily determined by
HAADEF-STEM images. But many commercial Mg alloys
usually have a combination of several alloying elements.
The segregation behavior in twin boundaries in such
Mg alloys with multiple alloying elements has not been
well established. Direct observation and identification of
multiple alloying elements segregated at twin boundaries
need atomic-resolution EDS maps, which are previously
thought experimentally challenging to be obtained in Mg
alloys due to the severe beam damage. In this work, atomic-
resolution EDS maps of segregated solute atoms in twin
boundaries in a commercial QE22 alloy are successfully
acquired at much lower electron voltage. A new pattern

of solute segregation in twin boundaries is observed, i.e.
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Fig. 1: Alternating distribution of Nd and Ag columns in a coherent (1012) twin boundary. (a) Atomic-resolution [1210] HAADF-
STEM image. (b) Enlargement of a region in (a). (c-¢) Corresponding atomic-resolution EDS maps showing atomic columns rich in (c)
Nd, (d) Ag and (e) (Nd + Ag). Dashed circles in (b-e) indicate extension sites. (f) Atomic-resolution [1011] HAADF-STEM image. (g)
Enlarged image of a boundary segment in (b). (h-j) Corresponding atomic-resolution EDS maps showing atomic columns rich in (h)
Nd, (i) Ag and (j) (Nd + Ag). (k) Schematic diagram showing arrangement of Nd and Ag atoms within a (1012) twin boundary. Blue
and red arrows indicate [1210 ] and [1011] directions, respectively.( 1, m) Segregation layer viewed along (1) [1210] and (m) [1011]. (n,
o) Simulated [1210] and [1011] HAADF-STEM images respectively. Insets in (n) and (0) are experimental images.

alternating Nd and Ag atoms fully occupied the extension
and compression sites in the twin boundaries, respectively.
The segregation of specific solutes switches the migration
mechanism of the twin boundary from the commonly
accepted mode to a new one, and which increases the
boundary pinning effect by more than 33 times. This
work demonstrates that the atomic-scale analysis of the
distribution of alloying element atoms is now possible by
using atomic-resolution EDS, which will greatly promote

the development of light alloys and other engineering

materials. More detailed description can be found in Nat

g

Commun. 10 (2019) 3243. (b;\
. B . § 00 Nanostructure :K‘Rm;'

3.10.1.2 Grain Size Effects of the Deformation = 5 —@cn
- ——300°C-1h

Behavior and Mechanical Properties in Mg-3Gd 2 e
@ 200 ——340°C-1h

Alloys 2 e
g: 150 —E?:

Samples of Mg-3Gd (wt. %) were prepared by E 100 iy

accumulative roll-bonding (ARB) followed by annealing g, 5

at different temperatures to produce samples with different 0

microstructures and grain sizes. The microstructure T 10 20 30 20 50

evolution of these samples were systematically Engineering strain (%)

investigated, and the effects of grain size on their )
Fig. 2: (a)The microstructure of Mg-3Gd alloy after ARB-

mechanical behaviors and deformation mechanism were
studied. With microstructure parameters quantified, the
strengthening and toughening mechanism of Mg-3Gd

i 4

processing. (b) Engineering stress-strain curves of the initial
sample before ARB and for samples of different average grain
sizes obtained by ARB-processing and annealing under different
conditions.
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alloy was revealed, and a quantitative model of strength
and microstructure was proposed. The main results are as
follow:

Nanostructured Mg-3Gd alloy plates were prepared
by ARB process. The samples present three different
microstructures, i. €. nanostructure, micro-nano layered
heterostructure, and micro-scale recrystallized structure,
First, the
nanostructured deformed samples have high strength

after annealed at different temperatures.

and poor plasticity. Notable hardening during annealing
is observed, and the segregation of Gd eclements at
grain boundaries, twin boundaries, stacking faults and
dislocations is thought to be the primary cause. In addition,
both the strength and elongation of annealed nanostructured
samples are increased compared with the deformed
samples, which is owning to the activation of non-basal
plane dislocations and the pinning of dislocations by Gd
atoms. Second, the samples with micro-nano layered
heterostructures show good strength and plasticity. The
strength was equivalent to that of the deformed samples,
and the clongation was larger than that of the original
coarse-grained samples. Third, samples with micro-scale
recrystallized structures demonstrated changes of both
mechanical behavior and deformation mechanism with the
decrease of the grain size: (i) a transition in the mechanical
behavior from continuous flow to discontinuous flow
associated with a yield point phenomenon, and (ii) a
transition in the deformation mechanisms from <a>
slip and twinning to <a> and <c+a> slip. More detailed
information can be found in Acta Mater. 183 (2020) 398.

(a) External stress effect:

Oy = Toy /My = Tey/ My

3.10.1.3 Quantitative Study on the Texture
Dependence of Grain-boundary Strengthening
for Hcp Metals

The high texture dependence of a Hall-Petch slope
(k) for Mg alloys has been frequently reported. Several
important equations used to calculate k have been
previously developed, and although they seem to work
well for fcc and bece materials, they often fail to predict
the highly texture-dependent k in Mg alloys. A new
equation based on the dislocation pileup model was
developed in this study. The validity of this new equation
was tested through a comparison of the predicted k values
with the experimental values as well as the calculations
from older equations. The results indicate that the new
equation can achieve an accurate prediction for several
previously reported texture effects on k, whereas the k
values predicted by the older equations often exhibit a
clear deviation. The reasons for this were analyzed and
discussed. The strong deformation anisotropy for Mg
alloys leads to a complex texture effect on k, including
the effects from both external and internal stresses. Both
effects are well expressed in the new equation. In contrast,
the old equations consider the external stress effect, but do
not express well the internal stress effect. In addition, the
old equations consider only the predominant deformation
mode. However, our results indicate that the activation
of a portion of another deformation mode other than the
predominant one plays an important role in the k value.
In the new equation, all possible deformation modes and

their fractions are considered in the calculation. Using the

Internal stress effect:

m' = Ty Tyay = cos(a) cos(B)

(b)

k ratio Kas-: Ks75 Koo | Krog ! Kpiate kep  krp
experimental value 1:1.4:2.6 1:1.9 1:2.0
k = M2z ()2 (old) 114114 1:1.0 114
k = 20,m'~'r1/2 (new) 11427 121 1:2.0

Fig. 3: (a) Schematic diagrams showing models and parameters to describe the effects of crystallographic orientation on grain-
boundary strengthening, where m, and m, are Schmid factors, X, and X, are slip directions; (b) a comparison of the predicted k

values between the new and old equations.
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important parameters of the new equation, the mechanisms
for several texture effects on k as previously reported were
discussed and new understandings were obtained. More
detailed information can be found in Acta Materi. 173
(2019) 142.

3.10.1.4. In situ study on mechanical properties
of self-assembled three-dimensional nanoporous
graphene

A lot of progress has been made at present in the in-
situ study of the relationship between the structures and
properties of structural materials, but few research has been
made on the structural stability of functional materials. In
this work, the deformation mechanism of self-assembled
three-dimensional nanoporous graphene for supercapacitor
was in situ investigated from all scales. It was found that
the microstructure of the nanoporous graphene can be
changed from flexible network to rigid network by heat
treatment. Correspondingly, it could also be changed from
plastic deformation to pseudo elastic deformation. We can
see from Fig. 4 that the highly dense-yet-porous graphene
monolith treated at room temperature (HPGM-RT) sample
has plastic deformation during loading, while the HPGM-
1600 sample still has elastic deformation under a load of
80 mN. After unloading, some slight traces on the sample

surface might be related to the microstructure deformation.

More detailed information can be found in Adv. Funct.
Mater. 29 (2019) 1900311.

3.10.1.5. Understanding Common Grain Boundary
Twins in Mg Alloys by a Composite Schmid Factor

It is well known that twinning likely nucleates
and forms pairs at grain boundaries (GBs) during the
deformation of Mg alloys. Therefore, the crystallography
of GBs plays an important role in selecting twin variants.
In this regard, the Schmid factor (SF) cannot predict from
which GBs twinning prefers to nucleate. To solve this
problem, a composite Schmid factor (CSF) is proposed in
this paper that incorporates both the SF and a geometric
compatibility factor (m'). First, the link of the CSF with
the SF and m' is defined and discussed based on theoretical
derivations. Then, experiments were carried out to
investigate the effects of this parameter in predicting {10-
12} extension twins in AZ31 Mg alloys. A CSF threshold
for the activation of common-boundary twins was noticed
and it decreases with the applied strain. By contrast, the
SF threshold and its dependence with strain is not obvious.
Moreover, the CSF is more effective in predicting the
variants of common-boundary twins especially for small
strain. More detailed information can be found in /nt. J.
Plasticity 123 (2019) 208-233.

HPGM-RT
30

—— 10mN
—— 20mN
—— 30mN

1000 2000 3000 4000 5000

Depth (nm)
|HPGM-1600
—— 20 mN
——40 mN
—— 80 mN
1000 2000 3000 4000 5000 6000
Depth (nm)

Fig. 4: Mechanical characterizations of bulk HPGM by in situ SEM nanoindentation. (a-b) SEM images of HPGM-RT before and
after nanoindentation under a load of 10 mN; (¢) Load-displacement curves of HPGM-RT with the loads limited at 10, 20, and 30
mN, revealing a plastic deformation; (d-e¢) SEM images of HPGM-HT before and after nanoindentation under a load of 30 mN; (f)
Load-displacement curves of HPGM-HT with the loads limited at 20, 40, and 80 mN, characterized by the elastic recovery.
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Fig. 5: Illustration of two kinds of strain accommodation modes at grain boundary (GB): a twin pair T1-T2 and twin-slip pair T1-S2;
(b) Mlustration of the basis of T1 and T2, and the shear stress of T1 resolved on T2.
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3.1 XBEXHZEB

As-deposited sample

Simulation

HRMBEFE: = &
HRABTA (5A)

B R (BMMAMA S ) TA2Z; ADATER)
AEN (B, k. MABHMH . 28 ML Yofe X Sk 20 IL b bfe /) 11

SROLOVITZ David Joseph (#+H FesZitt#t4t5; MAa98ms,. £ K, MALEHFHIRE LT, M

AR T )
FOAR (Hh MR A & FR A )
%o (AR KR A B T )

129

SYNL



SYNL 20195 & 1k (ANNUAL REPORT)
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3.11 Greater Bay Division
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DIVISION HEAD: LU Jian

RESEARCH GROUP LEADERS: (5)
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3.11.1 Summary of Scientific Activities

Summary of the work of 2019:

1. Started building the platform for nanomaterial preparation, additive manufacturing and concurrent engineering

design.
2. Sample preparation in theory and technology, with the initial sample preparation completed.
3. Investigated the components and technology of high performance nano metallic materials:

(1) We developed a hierarchical nanostructured Al alloy with a structure of Al nanograins surrounded by nano-sized
metallic glass (MQ) shells. It achieves an ultrahigh yield strength of 1.2 GPa in tension (1.7 GPa in compression) along
with 15% plasticity in tension (over 70% in compression). This plastic deformation mechanism is also an efficient way
to decrease grain size to sub-10 nm size for low melting temperature metals like Al, making this structural design one

solution to the strength-plasticity trade-off.

(2) We constructed a clear deformation pattern of natotwins (NTs) in austenitic stainless steel by combining in situ
tensile tests with a dislocation-based theoretical model and molecular dynamics simulations. The simulation results are
highly consistent with the observed strong lambda-effect, and reveal the intrinsic transition mechanisms induced by

partial dislocation slip.

(3) The temperature- and rate-dependent yielding of twinning-induced plasticity (TWIP) steels containing various
carbon contents were investigated. The activation volume and the activation energy have been determined. A constitutive
model, which rationalizes yielding as the thermally assisted bowing out of dislocations under the pinning effect of carbon
solutes, is proposed, and for the first time quantitatively predicts the thermal activation parameters of TWIP steels as a
function of carbon content. Based on the modeling results of thermal activation parameters, the overall temperature- and
rate-dependent yield stresses of TWIP steels containing various carbon contents are predicted, showing good agreements

with experimental results.

(4) The strengthening mechanisms as well as the toughening of a low cost weldable HSLA steel with a low content of
carbon were carefully investigated. The low-C-Ni-Cu HSLA steel can achieve a yield strength (YS) and ultimate tensile
strength (UTS) over 1000 and 1100 MPa, respectively, with tensile ductility >10% at a heat-treat temperature of 640°C
through multiple strengthening mechanisms. Besides, a good low-temperature (similar to 40°C) impact performance
(similar to 200 J) with high YS (similar to 900 MPa) and UTS (similar to 1000 MPa) can be obtained. Moreover, a
relatively lower YS (similar to 800 MPa) and UTS (similar to 900 MPa) useful for steel manufacturing can be attained
by a prolonged aging at 640 °C.

4. We theorize amathematical model by which the topography and the full-field deformation of martensitic microstructure
are quantitatively determined by the reflected light differential interference contrast microscopy technique. This work
underlies a new approach for quantitative surface topography determination with wide applications in experimental

mechanics.

3.11.1.1 Hierarchical Nanostructured Aluminum
Alloy with Ultrahigh Strength and Large Plasticity

High strength and high ductility are often mutually
exclusive properties for structural metallic materials. This
is particularly important for aluminum (Al)-based alloys

which are widely commercially employed. In order to

overcome this strength-ductility trade-off, we developed a
hierarchical nanostructured Al alloy with a structure of Al
nanograins surrounded by nano-sized metallic glass (MG)
shells.It achieves an ultrahigh yield strength of 1.2 GPa in
tension (1.7 GPa in compression) along with 15% plasticity
in tension (over 70% in compression). The nano-sized

MG phase facilitates such ultrahigh strength by impeding
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dislocation gliding from one nanograin to another,
while continuous generation-movement-annihilation of
dislocations in the Al nanograins and the flow behavior of
the nano-sized MG phase result in increased plasticity.

Previous investigations pointed out that due to thermally
activated GB migration, grain refinement of low melting
temperature metals by straining is extremely difficult.
n our study, ~8 nm grain size was achieved. In other
words, the nano-sized MG phase effectively impedes GB
migration , which prevents softening mechanisms (such as
grain growth) from taking place, contributing to the alloy’s
ultrahigh strength.

The homogeneous plastic flow in the nano-sized MG
phase is notable, and the flow stress of the nano-sized
MG phase may reach to theoretical strength during plastic
flow. This indicates that the nano-sized MG phase is still
strong during plastic deformation and is able to prevent
the softening mechanism of the nanograins, such as GB
migration in the conventional nanocrystalline materials.
Moreover, its homogeneous flow behavior accommodates

the large plastic deformation of the nanograins, which

prevents shear deformation mechanism, such as stress

'\(w .

localization, indicating a high toughness of the alloy.

Because the nano-sized MG phase can flow at such
high stress level, the mobile atoms on the edge of the MG
phase are able to act as the ideal sink for dislocations when
they are encountered. As a consequence, these dislocations
disappear at the interfaces and the grain regions near the
glass/crystal interfaces return to quasi-dislocation free.
The continuous generation-movement-annihilation of
transitory-dislocations contributes to the homogenous
deformation of the hierarchical nanostructured Al alloy.

This plastic deformation mechanism is also an efficient
way to decrease grain size to sub-10 nm size for low
melting temperature metals like Al, making this structural
design one solution to the strength-plasticity trade-off.
Our results illustrate a hierarchical nanostructure approach
in material engineering and may contribute to not only
the development of tough lightweight alloys but also the
applications of microelectromechanical systems (MEMS)
flexible wearable devices.

This work was published in Nat. Commun. 10 (2019)
5099.

Fig.1: Plastic deformation mechanism of the hierarchical nanostructured Al alloy. (a) Cross-sectional TEM image of a 1 um-
diameter pillar after compression. (b) Enlarged TEM image from white dashed rectangle area in (a). The red arrows indicate the
positions of some dark regions. (c) HRTEM image near nanolamellar grains G1, G2, and G3, clearly demonstrates the existence of
the amorphous phase (glass layer) after deformation. (d) HRTEM image near nanolamellar grains G4, G5, and G6. The nano-sized
MG phase is colored by light yellow. The lower right inset is inverse Fourier transformation (IFT) image of the dashed square area
in the main image, showing some of the dislocations ‘L. () Illustration of dislocations’ activities interacted with the nano-sized MG
phase. A dislocation (‘L) is generated on the glass-grain 2 interface and then moves inside grain 2. Another dislocation (‘1) moves
inside grain 1 and then is absorbed by the atoms on the edge of the nano-sized MG phase (dislocation annihilation). The red and blue
spheres represent mobile and less mobile atoms respectively. The dashed circles represent the original positions of the mobile atoms.

The black arrows denote the motion directions of the dislocations
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3.12.1 Summary of Scientific Activities

The Joint Research Division integrates groups from different disciplines to conduct cutting-edge research
in materials science. It provides a platform that encourages innovation, facilitates interdisciplinary research
collaborations, and promotes interaction between basic science and application-orientated research. The mission is
to build a team of excellent scientists, provide supports for research into emerging new materials and challenging
applications, strengthen both basic research and technological innovations, make major breakthroughs and even
lead the research in key areas of materials science internationally.

The major achievements of this year include:

(1) We developed a thermoelectric (TE) material comprising of highly ordered Bi,Te, nanocrystals anchored
on a single-walled carbon nanotube (SWCNT) network, which shows high thermoelectric performance and
exceptionally high flexibility.

(2) We devised a full-2D GaTe floating-gate-memory (FGM), which enables a prototype device of directional
floating gate memory, showing great potential for future nanotechnology such as novel directional sensor/memories
and etc.

(3) We fabricated a high-performance, flexible UV-image sensor and flexible photon-triggered logic gates, by
integrating organic/ inorganic hybrid heterostructures on human hair.

(4) We revealed for the first time the structure-function relation regularity and physical-chemical nature of the
promotion effect of heteroatoms to nanocarbon catalysts, which is important to the design and potential practical
applications of nanocarbon catalysts with high efficiency.

(5) We reported the direct writing of metal 3D terahertz photonic crystals (TPCs) for Terahertz technology
applications.

(6) A universal scaling relationship between the strength and Young’s modulus was observed in dealloyed porous
Fe . Cr

0.80 770.207
relative density” is properly considered, as we proposed earlier.

which proves that the G-A scaling equations are valid for dealloyed materials as long as the “apparent

(7) By the control of temperature of the billet, the lubrication of extrusion, we extrude a large-diameter Incoloy825
pipe with 1.2 meters in diameter successfully, which have important applications in the areas such as chemical
industry, power generation and oceanographic engineering industry.

31211 Gate-Tunable  Giant Anisotropic exhibits ellipsoidal dependence with respect to different

Resistance in 2D GaTe directions. This behavior is similar to those reported in
SnSe, GeP.

Researchers from SYNL found that electrons in two- Surprisingly, when subjected to a perpendicular

dimensional world may flow in an anisotropic manner,
leading to conductivity difference along different
crystallographic directions. Furthermore, this manner is
gate tunable. i.e., a vertical electrical field can change the
directional difference of resistance/resistivity in 2D.

We encapsulated 4.8 nm few-layered GaTe (~ 6 layers)
in between two h-BN flakes with thickness at the order of
10 nm. With the h-BN protection, few-layered GaTe can

retain its pristine physical properties, and the resistance

142 w

electrical field, the ratio between maximum and minimum
resistance along different directions in 2D GaTe can be
gate-tuned from less than 10 to up to 5000, far above
in-plane anisotropic resistance found in any other 2D
systems. The above experimental observation resembles
the scenario that when the electrons move in the 2D
crystal, a vertical electrical field can act as traffic control:
electron ‘traffics’ in x direction are allowed/stopped with/

without vertical electrical fields, giving rise to maximum
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Fig. 1: Directional functioning in 2D-GaTe FGT. One gate programming can store two data sets at different output levels.

three orders of magnitudes in the total traffic along y and
x directions.

Based on this, the team from SYNL further devised a
full-2D GaTe floating-gate-memory (FGM) using the vdW
vertical assembly technique. It turned out that in this novel
type of 2D-FGM shows excellent memory properties, with
on/off ratios retained larger than 107 and retention time
above 10° s. Among all the 2D FGM devices reported, the
2D GaTe FGMs have so far the best memory performances.
Moreover, it is found that when testing the 2D GaTe FGM
devices along x and y directions, the memory performance
are also larger different from each other, originated from
the giant anisotropic resistance in the few-layered GaTe
channel. In other words, there is possibility that in future
disks made by GaTe FGMs, one can read the data out of
a same disk but totally different information, by simply
swapping the reading directions.

GaTe in the 2D limit shows gate-tunable giant
anisotropic resistance, which enables a prototype device of
directional floating gate memory, showing great potential
for future nanotechnology such as novel directional sensor/

memories and etc.

3.121.2 Z0/ZnO/PVK/PEDOT:PSS Flexible
Optoelectronic Devices Integrated on Human
Hairs

As an emerging photoelectric technology, flexible
optoelectronics with excellent flexibility and ductility
are fabricated on flexible plastics or thin metal substrates
and show extensive applications in information, energy,
medical treatment and national defense, etc. Generally,
flexible devices were fabricated through the direct
growth or transfer of nanomaterials on flexible substrates.
Therefore, substrate selectivity is a crucial concern in the
design and development of flexible optoelectronic devices.
Unfortunately, most of the flexible substrates used for
commercial applications are either non-biodegradable or
expensive. As a result, developing suitable substrates for
the preparation of flexible devices is vital for cost-effective
and environmentally friendly applications. Additionally,
ZnO nanostructures, as one of the excellent photoelectronic
components, can be grown on arbitrary substrates through
the seed layer deposition and low temperature growth
process but the long photoresponse time (from seconds

to hours) arising from O, adsorption/desorption at crystal
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Fig. 2: Flexible AZO/ZnO/PVK/PEDOT:PSS UV photodetector integrated on human hair and its application in flexible photon-

triggered logic functions and UV-image sensors.

surface and rich surface states greatly limits its practical
applications in flexible electronics. To overcome these
problems, we created Al-doped ZnO (AZO) / ZnO
nanorods (NRs) / poly (9-vinylcarbazole) (PVK) / poly
(3,4-cthylen-edioxythiophene): poly (styrenesulfonate)
(PEDOT: PSS) organic / inorganic hybrid heterostructures
on human hair using low-temperature deposition methods.
A high-performance ultraviolet (UV) photodetector based
on the hair-based heterostructure shows a fast response
speed (110 ms), high photoresponsivity (81.6 mA W),
specific UV-detection wavelength, and excellent flexibility
and stability over extended periods. A high-performance,
flexible UV-image sensor was prepared using 7 hair-
based heterostructures as 7 image pixels to identify target
Arabic numerals from 0 to 9. Flexible photon-triggered
logic gates, including AND, OR and NAND gates, were
also created through rationally combining the hair-based
heterostructures in circuits. Moreover, the performance of
the devices remains unchanged under different bending
conditions, proving their outstanding stability and superior
flexibility. The results obtained in this work demonstrate
the possibility of using the human hair as fibre-shaped
flexible substrate and the potential of using hair-based
heterostructures as building blocks to create various

functional optoelectronic devices.

3.12.1.3 Reaction Mechanism and Structure-
Function Relations for Nanocarbon Catalysts

Nanocarbon materials exhibit intriguing catalytic
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activity in gas phase, liquid phase, electrochemistry and
other energy related reaction systems, which became a
hot topic in the field of chemistry, energy and material
science. We have focused on the research field of carbon
catalysis, since 2008, and we have updated our research
emphasis from nanocarbon material synthesis at initial
stage to the studies on the nature of nanocarbon catalysis
and the basic theory of carbon catalyst structure-function
relations. We have successfully solved or revealed a series
of fundamental frontier scientific questions or challenges,
including identification and quantification of active
sites, kinetic reaction models, intrinsic catalytic activity
measurements and comparisons etc., in the research topic
of reaction mechanism of nanocarboncatalysis using
our own developed unique experimental strategies, such
as active site titration, model polymer catalysts, in situ

spectroscopy and control surface reactions etc.
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Fig. 3: Comparisons of the intrinsic catalytic activity of
nitrogen doped- and undoped- carbon nanotube catalysts
in ethylbenzene oxidative dehydrogenation reactions.
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This year, we made further progress in this direction
based on the previous findings. We have revealed for the
first time the structure-function relations for hetero-atom
doped nanocarbon catalytic materials via classical kinetic
strategies. The corresponding results have shown that
heteroatoms, such as nitrogen atoms, do not always bring
positive effect to the catalytic reactivity of nanocarbon
materials in alkane ODH reactions, and the rational choice
of the reaction conditions is the key to show the unique
and advanced catalytic activity of heteroatom doped
nanocarbon materials. More importantly, the detailed
reaction kinetic analysis and structural characterization
results have shown that the promotion effect of nitrogen
atoms mainly comes from the electron transfer from
pyridinic nitrogen to carbon matrix, which could effectively
enhance the nucleophilicity and thus improve the catalytic
activity of nanocarbon catalysts for C-H bond activation
(Appl. Catal. B-Environ. 258 (2019) 117982). The present
research revealed for the first time the structure-function
relation regularity and physical-chemical nature of the
promotion effect of heteroatoms to nanocarbon catalysts,
and this basic structure-function relation is considered
as the foundation for the establishment of the theoretical
systems for nanocarbon catalysis and the important
guidance for the rational design and potential practical

applications of nanocarbon catalysts with high efficiency.

3.12.1.4 Direct Writing of Microfluidic Three-
dimensional Photonic Crystal Structures for
Terahertz Technology Applications

Terahertz technology is one of the most frontier
technologies which has received much attention due to
its wide range applications from the unique properties
of terahertz irradiation. Locating between infrared
and microwave in the electromagnetic spectrum, the
terahertz radiation possesses specific properties like wide
bandwidth, transparency in most dielectrics, spectroscopic
fingerprinting, low photon energy and non-ionization.
Thus, it has great potential for many technical applications,
including wireless communication, security, medical and
biological applications, food and agriculture technology,
astronomy, analytical science, and environmental
monitoring. As an important type of terahertz devices,

terahertz photonic crystals (TPCs) are artificial materials

with periodic structures which could shape the flow of
tetrahertz irradiations effectively. Among them, three-
dimensional photonic crystals (3D-TPCs) could find more
technical applications because they could possess bandgaps
for all directions due to their periodic variations in all three
orthogonal directions. Although 3D printing technique
had been demonstrated as a powerful approach to create
3D-TPCs with various material systems of ceramics,
composites, and polymers, it is still a challenge to produce
metallic 3D-TPCs. Furthermore, most 3D-TPCs had fixed
terahertz responses because their materials and structures
were fixed after they were created, while the capability
of changing terahertz response is highly desirable for
3D-TPC:s to possess specific functionalities.

On the other hand, terahertz technology is promising as
a key technique for biological and chemical detections due
to its nondestructive and non-ionization nature. However,
its practical applications are still limited because water in
these samples could severely attenuate terahertz irradiations
by absorption. One proposed solution was to decrease
the distance that terahertz irradiation goes through liquid
samples to reduce its absorption by water, so microfluidic-
assisted terahertz technology could be a promising
approach. Although one-dimensional and two-dimensional
photonic crystals and waveguides had been created to
solve this problem, their linear and planar geometries
could not accurately mimic the three dimensional nature

of most biological systems. Furthermore, it was difficult

Fig. 4: The schematic illustration of the direct-writing of
microfluidic three-dimensional photonic crystal structures
via a layer-by-layer building process and their different
terahertz properties by in situ changing the injected
fluidic media in real time without structure change.
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to couple THz irradiation into their fiber or waveguide and
their fabrication processes were generally expensive.

In this work, microfluidic 3D-TPCSs were assembled
with a glass cement ink by the direct writing technology.
Microstructured channels with a reverse woodpile structure
were embedded inside these microfluidic 3D-TPCSs, which
allowed the injection of various fluidic media into them for
different terahertz technique applications. By the creation
of microfluidic 3D-TPCSs, metal 3D-TPCs could be easily
obtained through the injection of a liquid alloy of EGaln
into these microfluidic 3D-TPCSs. By in situ changing the
injected fluidic media of different dielectric properties,
these microfluidic 3D-TPCSs could demonstrate different
terahertz properties in real time without structure changes,
which could be beneficial for their integration into various
terahertz devices for a wide range of applications. Due to
their microstructured channels, the absorption of terahertz
irradiation by water could be largely reduced in them,
which endowed them the capability to be used as real
time, nondestructive biological and chemical detectors.
Thus, novel functionalities could be introduced into these
microfluidic 3D-TPCS-based THz devices, and they have
a great potential for various technical applications.
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3.12.1.5 A Universal Scaling Relationship Between
the Strength and Young’s Modulus of Dealloyed
Porous Materials

The mechanical properties of dealloyed nanoporous
metals typically deviates from Gibson-Ashby (G-A) scaling
laws. The fact that ligament strength is strongly affected
by size has become an obstacle to understanding the
relationship between structural topology and mechanical
response of dealloyed nanoporous metals, and the failure
of G-A scaling laws in dealloyed nanoporous materials.

In this study, we studied the mechanical properties of

porous Fe , Cr ., prepared by liquid metal dealloying.

0.80
The ligament diameters of these samples are stabilized at
approximately 4 micron, so that the ligament strength is
constant in all samples. The variation of strength (or flow
stress) and Young's modulus with relative density, on a
log-log scale, is nonlinear. Both properties decrease more
steeply with decreasing relative density at lower relative
density. These results are similar to the observations in
nanoporous gold prepared by (electro) chemical dealloying
but deviate from G-A scaling laws. However, the strength
0.80cr0.20
modulus on a log-log scale exhibits a linear relation in the

of the porous Fe plotted against the Young's

full range, with a slope of approximately 3/4 that matches
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Fig. 5: Structure and Mechanical properties of porous Fe,¢Cr,,, prepared by liquid metal dealloying. (a) A scanning
electron micrograph of porous Fe,3,Cr,,, with relative density of 0.30; (b) Variation of the strength with relative density
in a log-log plot; (c) Variation of the Young’s modulus with relative density; (d) Variation of the strength with Young’s
modulus; The solid lines in parts (b-d) are linear fits of the data from the different power relations in theoretical models.
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perfectly with the standard G-A prediction. This confirms
the significant role played by “dangling ligaments" in the
deformation of dealloyed porous materials: Coarsening-
induced pinch-off of some ligaments is responsible for
the anomalously low strength and stiffness of dealloyed
porous materials; the load-bearing network remains self-
similar, and its mechanical response follows the standard
G-A scaling laws, despite the fact that the porous material
itself may not do so. Our study confirms that, for dealloyed
porous materials, the G-A scaling relations are valid if
the apparent relative density or, alternatively, genus-
density-related pre-factors are introduced. The universal
scaling relationship reported in this study may also act
as a criterion for assessing the validity of any model or
modified scaling equations that are proposed to quantify
the mechanical properties of dealloyed materials, and
other porous materials including the ones developed by
3D printing.

3.12.1.6 Hot Extrusion Technology for Large
Diameter Corrosion-resistant Alloy Tubes

Corrosion resistant alloy seamless pipes are widely
used as pipeline in chemical industry, power generation
(including nuclear power) industry, oceanographic
engineering industry and other fields. Among which, the
Main Line used pipes, whose diameter is greater than
0.5 meters, have not been produced localized. They still
need import at present. The difficulties in manufacturing
of those large pipes mainly include high hot extrusion
temperature, narrow temperature range (less than 20001),
great deformation resistance, high requirements for mold,
lubrication, temperature control, etc. In order to meet the
demand of chemical industry for the pipe, the research
group, in cooperation with Liaoyang Petrochemical
Machinery Designing Manufacturing co.,LTD., and
Qinghai Kang-Tai Forging & Casting co.,LTD., carry out

this large diameter No8825 alloy (Incoloy825) pipe hot

Fig. 6: Photograph of a large diameter corrosion-resistant alloy
tube.

extrusion research project.

By optimizing the process, the transfer time of the hot
billet is shortened and temperature drop is significantly
reduced. By taking the lubrication film splicing and
covering technology developed by the research group,
the hot billet is better insulated. By using a kind of
innovative multi-layer composite lubrication, excellent
thermal insulation and lubrication effect is achieved. After
preliminary test, a large-diameter nickel-iron-chromium
alloy No8825 main pipe sample is extruded successfully,
whose dimension is: 1.2m in diameter, 45mm in wall
thickness and 10m in length.

The breakthrough of hot extrusion technology for large
diameter corrosion-resistant alloy pipes will strongly
promote the localization of such pipes, and contribute
to the independent control of related chemical, power

generation and oceanographic equipment.
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3.13 Quantum Materials Joint Division
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3.13.1 Summary of Scientific Activities

Research at the Quantum Materials Joint Division focuses on the novel quantum materials such as superconducting
materials, correlation materials, topological materials, low-dimensional materials. The research area includes the
synthesis and characterization of nanostructured quantum materials and their heterostructures, the development of new
technologies and instruments to probe the novel physics at lower temperature, smaller spatial scale, shorter time scale. The
ultimate goal is to understand the basic mechanisms of the quantum materials, and to seek the protentional applications in

superconducting device, optoelectronic device, chemical catalysis and so on.

The major achievements of 2019 include:

(1) Obtain the second prize of National Natural Science Award in 2019 based on a series of works on the realization of

Majorana zero modes in Bi,Te.-type topological insulator-superconductor heterostructures.

(2) Atomically flat topological crystalline insulator-superconductor heterostructures Pb,_Sn Te-Pb are successfully

fabricated by molecular beam epitaxy. The superconducting proximity effect in the heterostructures is unexpectedly

strong even at 4.2 K. Evidences to support the topological superconductivity in the heterostructures are observed.

(3) A multifunctional STM is developed which enables in situ four-point-probe electrical measurement and two-coil

mutual inductance measurement. The diamagnetic response of K-adsorbed multilayer FeSe films are in situ detected in

ultrahigh vacuum.

3.13.1.1 Superconductivity of Topological Surface
States and Strong Proximity Effect in Pb, Sn Te-
Pb Heterostructures

A topological superconductor (TSC) is characterized
by having a pairing gap in the bulk and gapless Andreev
bound states at its boundary, which is topologically distinct
from a conventional superconductor (SC). TSCs contain
Majorana zero modes (MZMs) which obey non-Abelian
statistics, thus exhibiting great potential applications in
fault-tolerant topological quantum computing. After the
realization of topological insulators (TIs), the search for
TSCs in real materials has already been a very hot topic
in condensed matter physics. Natural TSCs are rarely
found, but topological superconductivity can be induced
in TIs through chemical doping and superconducting
proximity effect. Topological crystalline insulators (TClIs)
are topologically nontrivial states of matter that the gapless
surface states are protected by crystalline symmetry
instead of time-reversal symmetry. The first class of TCIs
has been recently predicted and verified in the SnTe-type
IV-VI semiconductors with a rock-salt crystal structure.
Superconducting TCIs are expected to form a new type of
TSCs that multiple MZMs bound to a single vortex may
be supported under the protection of lattice symmetries.

The bulk superconductivity of TCIs has been induced

through chemical doping and proximity effect. However,
STM experiments still display the conventional full gaps
in the superconducting TCI, so the existence of topological
superconductivity in TCIs remains controversial. In this
work, we fabricated atomically flat lateral and vertical
Pb, Sn Te-Pb heterostructures by molecular beam epitaxy
(MBE). The superconductivity of the Pb, Sn Te-Pb
heterostructures can be directly investigated by in situ low
temperature STM/STS. The superconducting proximity
effect in the heterostructures is unexpectedly strong even
at 4.2 K. The features of the tunneling spectra taken on
superconducting Pb,_Sn Te show a peak-dip-hump
character rather than the peak-shoulder character seen
in conventional SCs such as Pb, which is in agreement
with the existence of topological odd-parity pairing.
Quasiparticle interference (QPI) patterns taken at the zero
energy in the superconducting gap of Pb, Sn Te show a
fourfold symmetry, indicating the presence of gapless in-
gap states. The superconducting TCI is predicted to be a
new class of TSC supporting MZMs protected by lattice
symmetries. Our results suggest that the Pb, Sn Te-
Pb heterostructures have great potential application
in topological superconducting devices to detect and
manipulate MZMs in the future. The relevant work was
published in Adv. Mater. 31 (2019) 1905582.
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Fig. 1: Sn, Pb,Te-Pb heterostructure. (a) STM topography of an atomically flat lateral Pb, ,Sn Te-Pb heterostructure; (b-c) dI/dV
spectra taken on (b) Pb and (c) Sn, Pb,Te using superconducting tips; (d) Spatial evolution of the superconducting gap as a function
of the distance to the Pb island edge; (e) QPI pattern and (f) dI/dV map inside the superconducting gap of Pb, ,Sn,Te.

3.13.1.2 Diamagnetic Response of Potassium-
Adsorbed Multilayer FeSe Film

Carrier doping is an effective approach to the realization
of high-temperature superconductivity in cuprates and iron
pnictides, resulting in a dome-shaped relation between
critical temperature (T) and doped carrier density.
Similarly, in the case of a single unit-cell (1UC) layer
of FeSe film grown on a SrTiO,(001) substrate (STO),
electron transfer from the STO substrate to the FeSe layer
is believed to play an essential role in the emergence of
a large superconducting energy gap (ranging from 10 to
22 meV) and a high Tc value (ranging from 20 to 109 K
in different studies). For a multilayer FeSe film on STO,
in contrast, no superconducting like energy gap could
be observed, indicating that the electron doping is very
limited to the first FeSe layer in close proximity to the
STO substrate. Alternatively, researchers found another
strategy to enhance superconductivity in multilayer or bulk
FeSe by depositing alkali-metal (K or Na) atoms on the
surface. Such a top-down electron doping at appropriate
K coverage (K ) results in a superconducting like energy
gap closing at a temperature as high as ~48 K. However,
the superconductivity in the K-adsorbed FeSe multilayers
has not been verified yet via measurements of zero
resistance or the Meissner effect, which requires in situ

experimental techniques to overcome the problem from
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vulnerability of K adatoms to air. In contrast, the nature
of the superconductivity in K/FeSe films has not been well
studied yet. Moreover, a dome-shaped relation between the
energy gap and doping level has been discovered in K/FeSe
films, while only discrete T, values were found in FeSe thin
flakes by continuously tuning carrier concentration with a
solid ionic gating technique. It is therefore very natural to
raise questions whether a continuous dome-shaped phase
diagram exists or not in a FeSe-derived superconductor.
Based on a commercial STM with a four-electrode
piezo scanner tube, we developed a multifunctional
STM that enables in situ four-point-probe electrical
measurement and  two-coil mutual inductance
measurement in additional to general STM/S. We succeed
in observing diamagnetic response of K/FeSe multilayers
at various K, and thus reveal a continuous dome-shaped
(T, K)) phase diagram and experimental evidence for the
macroscopic superconductivity in a K/FeSe film. Besides
T, the information about the superconducting energy
gap (AE), penetration depth (A) and superfluid density
(ps) is also collected at various K 's, from which spatial
inhomogeneity of AE, quadratic low temperature variation
of A and an approximate linear relation between T, and ps
are revealed. These discoveries may be helpful for further
understanding of superconductivity in FeSe-derived
superconductors. The relevant work was published in Phy.

Rev. Lett. 123 (2019) 257001.
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Fig. 2: K-adsorbed Multilayer FeSe Film. (a) Schematic diagram; (b) STM image; (c) Evolution of Tc as a function of coverage of K
(K,); (d) Ratio of superconducting gap and T, vs K_; (e¢) Approximate linear relationship between T, and superfluid density.
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WA B R A A, LT AR A7) o B 2 AR AT AA B L BAA h G eh bk, LA
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3.14 Northeastern University Joint Division
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RESEARCH GROUP LEADERS: (4)

ZHANG Tao (Surface Treatment of Light Alloys)

LIU Li (Marine Corrosion and Protection)

XU Dake (Microbiology Induced Corrosion)

Chen Minghui (High Temperature Corrosion and Protection)
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3.14.1 Summary of Scientific Activities

The research directions of the Northeastern University Joint Division mainly focus on the core scientific and
technological issues of corrosion and protection for the materials. According to the different characteristic corrosion
environments such as ocean, deep sea, poles, high temperature and the presence of microorganisms, we conduct
researches on the development of corrosion test equipments, material corrosion mechanisms and corresponding protection
technologies. We have advanced the design and preparation of corrosion-resistant functional materials, novel protective
coatings, and better understanding for the principles of corrosion monitoring, detection, and anti-corrosion technologies
for engineering applications. The major research interests of our division include: surface treatment of light alloys,
corrosion and protection in oil and gas industry and marine environment, microbiologically influenced corrosion, and

high temperature corrosion and protection.
We have published 55 peer-reviewed papers in 2019, and the main progresses are shown as follows:

(1) We successfully establish the quinary Fe-Cr—CI—-CO,~H,O E-pH diagram under extreme environment, on the
basis of which, the new four-variance model can predict the lifespan under corrosion by combining all the existing
models. This work contributes to answer the key questions to determine the occurrence of corrosion and when it will

occur, addressing the knottiest concerns that trouble the oil-drilling enterprises in western China.

(2) We design a novel composite photoanode material, which combines the traditional Al-Zn-In-Mg-Ti sacrificial
anode material and Co(OH), modified TiO, nanotube photocatalyst material for the first time. At the late stage of
immersion, when the protection efficiency of the sacrificial anode matrix layer in the composite photoanode is reduced,
TiO, nanotube layer plays a better complementary role in photoelectrochemical protection, which can prolong the life of

the sacrificial anode material.

(3) We discover the catechin hydrate, an effective eco-friendly multifunctional chemical with excellent antibacterial,
antibiofilm and anticorrosion activities, possessing strong potential to be applied in the marine, oil and gas industries to
solve the global concerns caused by the microbiologically influenced corrosion. Catechin hydrate, originated from the
aromatic and medicinal plant, can inhibit the corrosion induced by Pseudomonas aeruginosa with an excellent inhibition
efficiency of 99.8%.

(4) We develop a novel enamel coating containing fluoride (CaF,). The [SiO,] network structure of enamel has high
thermal stability, and CaF, is easy to react with molten aluminum to form gaseous aluminum fluoride at the interface
of enamel/molten aluminum, which reduces the wettability of aluminum onto the enamel surface and improves the
corrosion resistance of enamel coating. This study provides a new high temperature protective coating for various metallic

equipment served in molten aluminum environment.

3.14.1.1 Pourbaix Diagrams and Life Prediction
for Stainless Steel in Extremely Aggressive Oil &
Gas Environment

difficulty in predicting the lifespan of pipelines brings
a series of problems to oil-drilling companies for the
design, management and decision-making of their oil

extraction behavior. The failure of these pipelines due to

The exploitation of oil & natural gas in western China  ¢orrosion will instantaneously lead to the loss of billions

is suffering from the most extreme environment in the  of dollars. Phase diagram is the most fundamental tool in

world, in which high temperature, high salinity, high  metallurgy and materials science, which helps predict the

concentration H,S/CO, and complicated synergistic  mjcrostructure and mechanical properties of alloys. The

effect between stress and flow coexist. This extreme
drilling conditions is peculiar to China, which has never

been reported and dealt with elsewhere in the world. The

162 w

E-pH diagram is the “phase diagram” in electrochemistry,
but it thermodynamically predicts the electrochemical

reactions, which justifies its usefulness in corrosion
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Fig. 1: (a) Pourbaix diagrams of HP-13Cr stainless steel and (b) the prediction for pit depth as a function of well depth after 6 years

of service in the extremely aggrassive enviroment.

science. However, the E-pH diagram under extreme
environment has yet to be established, which obstructs
corrosion scientists to predict the possibility of pipelines
to corrode. The establishment of E-pH diagram under
extreme environment is much more complicated than
its equivalent under normal conditions, since it needs to
consider the synergistic effect of high temperature, high
pressure, corrosive gas and corrosive anions (Cl" and
CO,”). Our research group strives to establish the quinary
Fe-Cr-CI-CO,-H,O E-pH by fully comprehending the
synergistic effect of different element, and correcting the
thermodynamic parameters (entropy, enthalpy, Gibbs free
energy, heat capacity and ionic activities) under extreme
environment. On the basis of the E-pH diagram, the new
four-variance model predict the lifespan under corrosion
by combining the existed models, such as the Sridhar
Model, the Open Circuit Model, the Point Defect Model,
the Lacy Model and the Gutman Model. The current
work contributes to answering the question concerning
the possibility of corrosion to occur and how long it takes

to occur. These questions are the most difficult ones that

1O, nanotube

Al Anode

trouble the oil-drilling enterprises in western China. The
model has also been successfully applied by Northwest
Bureau of Sinopec to the select of pipeline. For the detailed
version of this work, please refer to the published articles:
Electrochimi. Acta 293 (2019) 116 and J. Electrochem.
Soc. 166 (2019) C539.

3.141.2 A New Co(OH),/TiO, Photocatalytic
Composite Al-Zn-In-Mg-Ti Anode
Material

Sacrificial

Sacrificial anode protection is one of the most commonly
used protection methods in the marine environment.
the traditional Al-Zn-In-Mg-Ti

anode consumes fast and is easy to be attached to marine

However, sacrificial
organisms in the marine environment. Its performance and
life span need to be greatly improved. The photocatalysis
sacrificial anode itself is not consumed and is not easy to be
adsorbed by marine organisms, so it has a great advantage
in the marine environment. However, it is difficult to

achieve high protection performance and failure at night,

Fig. 2: Schematic diagram of morphology, performance and principle of a new Co(OH),/TiO, photocatalytic composite Al-Zn-In-

Mg-Ti sacrificial anode material.
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so it has not been effectively applied. In this work, a new
composite photoanode material, which combines the
traditional Al-Zn-In-Mg-Ti sacrificial anode material and
Co(OH), modified TiO, nanotube photocatalyst material
was studied for first time. Based on the long-term test
results of morphology, composition and electrochemical
protection performance, the way of composite photoanode
providing electrons through TiO, nanotube layer and
sacrificial anode substrate layer is proposed, and the dual
electrochemical cathodic protection for Q235 carbon
steel is realized. At the later stage of immersion, when
the protection efficiency of the sacrificial anode matrix
layer in the composite photoanode is reduced, TiO,
nanotube layer plays a better complementary role in
photoelectrochemical protection, which can prolong the
life of the sacrificial anode material. This work has been
highly recognized by the international peers and evaluated
by the reviewers; "A new Al photoanode coating based
on titanium, cobalt and sacrificial materials was proposed
and designed to provide new ideas for cathodic protection
in the marine environment. The topic is interesting and
deserves attention. "Provides a new design idea for the
design and development of corrosion protection methods
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of metals in the marine environment and the application
of photochemical materials. This work was published in J.
Electrochem. Soc. 166 (2019) h3215.

3.14.1.3 Catechin Hydrate as a Multifunctional
Eco-friendly Biocorrosion Inhibitor

Corrosion still remains a tenacious problem of iron and
steel materials in marine environment. Microbiologically
influenced corrosion (MIC) accounts for most of the
material damages in marine environment, the losses of
which amounts up to hundreds of billions dollar losses
annually worldwide. The biofilm is responsible for MIC,
thus how to mitigate MIC mainly focuses on the treatment
of the biofilm. Biocide is the most common and effective
method to treat biofilm, while it is not “green”, and long
term and high dosage treatment escalates the resistance
of the biofilm and the pollution to the environment.
An eco-friendly MIC inhibitor is desired to solve this
global concern. Catechin hydrate (CH), originated from
the aromatic and medicinal plant, was evaluated for its
antimicrobial, antibiofilm and anticorrosion activities for

304L stainless steel against marine corrosive biofilm by
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Fig. 3: Schematic illustration of an eco-friendly multifunctional biocorrosion inhibitor, catechin hydrate, for its antibacterial,

antibiofilm, and anticorrosion properties.
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means of surface analysis, electrochemical measurements
and quantum chemical calculations. Results showed that CH
inhibited the biofilm formation and killed mature biofilms.
Electrochemical data demonstrated that CH inhibited the
corrosion induced by Pseudomonas aeruginosa with an
excellent inhibition efficiency of 99.8%. It was also found
that CH significantly downregulated the expressions of
critical genes for quorum sensing and biofilm formation as
revealed by qPCR data. The scanning electron microscopy
and transmission electron microscopy images showed
that the antibacterial mechanism of CH was by damaging
the cell membranes and thus leading to the leakage of
the cell constituents. This study demonstrated that CH is
an effective eco-friendly multifunctional chemical with
excellent antibacterial, antibiofilm and anticorrosion
activities, possessing strong potential to be applied in

marine, oil and gas industries.

3.14.1.4 Enamel Coating Resistant to Molten
Aluminum Corrosion

Hot dip galvanizing is widely used in construction,

household electrical appliances, vehicle and ship
industries, and occupies a large proportion in the national
economy. In 2017, China's capacity of hot-dip galvanized
steel plate reached 93 million tons. At present, the rate
of hot-dip products in China (14%) is far lower than that
in developed countries (58%), the most direct reason of
which is the corrosion of stainless steel equipment caused
by liquid metals such as zinc and aluminum. In China, the

research on corrosion or tribocorrosion in liquid metals

Residual Al

Stainless Steel
60 min

200un

is still in its infancy, and the maintenance period is only
14 days. Accordingly, corrosion of liquid metal in hot
dip galvanizing equipment aroused close attention from
many large iron and steel enterprises, including Shougang,
Tanggang and Angang . The WC-Co composite coating for
corrosion protection, due to its high porosity, poor wear
resistance and corrosion resistance, has a short service life
and poor surface state, which leads to a serious decline
in the quality of hot-dip products under condition and
tribocorrosion in the liquid metals.

Enamel is to burn one or more layers of non-metallic
inorganic materials on the metal surface by a special
process, so that the metal and inorganic materials will
have physical and chemical reactions at high temperature,
form chemical bonds, and firmly combine the two into
a whole, so it has the advantages of impact resistance,
corrosion resistance, smooth and beautiful appearance,
insulation, heat resistance, wear resistance, etc., and is
expected to replace the traditional WC-Co composite
coating to be used on hot dipping equipment. A kind of
enamel coating containing fluoride (CaF,) was developed.
The [SiO,] network structure of enamel has high thermal
stability, and CaF, is easy to react with molten aluminum
to form gaseous aluminum fluoride at the interface of
enamel/molten aluminum, which reduces the wettability
of aluminum onto the enamel surface and improves
the corrosion resistance of enamel coating. This study
provides a new high temperature protective coating for
various metallic equipment served in molten aluminum
environment, and the relevant results are published in
Corros. Sci. 148 (2019) 228.
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Fig. 4: Cross-sectional morphologies of 304 stainless steel with or without enamel coating after corrosion in molten aluminum at
750 C for different times: (a) the 304 stainless steel, 60 min corrosion, forming a ~300 um thick corrosion layer; (b) the enamel
coating, 30 h corrosion, stable and without corrosion; (c) thermodynamic equilibrium diagram of volatile aluminum fluorides at
750 C.
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3.15 Technical Support Division

DEPUTY DIVISION HEAD: ZHANG Lei
TECHNICAL GROUP LEADERS: (5)

WU Bo (TEM Group)

TAN Jun (SEM Group)

WANG Shaogang (X-ray group)
YAO Ge (Property Group)
ZHANG Lei (Sample Group)
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2019 is a new year for the technical support division
(TSD) of the SYNL for plan and reform. New progress has
been made in platform construction planning, management
and operation, physical and chemical analysis capacity
expansion, infrastructure layout of the new analysis and

test center, etc.
3.15.1 Constructing Platform

The construction plan of the analysis and testing
platform focuses on the improvement of the capability
of high-end microanalysis technology of materials. It is
required to continue in strengthening the atomic resolution
spectroscopy analysis technology, nanoscale crystal and
defect characterization, expanding machining capability
in micro and nano scale. It also needs to introduce and
cultivate young talents to become skillful technical staff.
At the same time, we also cooperate with large scientific
facilities like synchrotron radiation to meet the needs of
high-end applications of X-ray technology.

In 2019, more than 35 million yuan has been invested
to purchase equipment, including spherical aberration and
high-resolution transmission electron microscopy, X-ray
micro focus fluorescence spectrometer for microstructure
and component analysis; testing machines for thermo-
mechanical properties, fretting fatigue tester for material
service performance evaluation; as well as physical and
chemical analysis equipment such as thermal analysis,
laser thermal conductivity measurement and liquid
chromatography-mass spectrometry. The self-developed
high-temperature Rockwell hardness tester was carried
on experiment for more and more sample and kept on
improvement to pass the certification of the standards
organization. We start to build a joint experimental
platform with Shanghai Synchrotron Radiation Facility.
With the cooperation of various beamlines, relevant
supporting equipment and technical methods are expected
to be developed for the research objectives of the SYNL.

We have improved the management by formulating
the regulations to adapt the TSD development for public
technical service. Reformed personal evaluation prompts
the technical staff to have more independent innovations
in equipment and methods relied on close cooperation
with the researchers of the SYNL. Our effort is to create

a world-class analysis and testing platform for material

170 w

research.
3.15.2 Shared Operation

All the equipment has been incorporated into the online
sharing management system to achieve the consistency of
equipment booking and machine time record. The statistics
and analysis of management data are more accurate and
convenient. We developed a Wechat small program for
the application and approval of the TSD expenses. The
software of the management system was updated according
to additional requirements of the service process.

In 2019, the TSD provided about 150 thousands hours
of machine time for research and service, and trained 1432
students or SYNL employee. The annual average machine
time of the electron microscopes reached 2559 hours,
which was 142% of the standard load of 1800 hours. Some
of the electron microscopes were used for more than 4500
hours, close to saturation of working days. The utilization
efficiency of equipment usage is kept at a high level.
While serving the scientific research work of SYNL, we
also provided timely and accurate analysis, testing and
consulting services for external users such as aerospace,
transportation, universities, research institutions and local

high-tech enterprises.
3.15.3 Developing Technique

The detection limit of time-of-flight secondary ion mass
spectrometry (TOF-SIMS) is ppm. The ability covers
all elements in periodic table, isotopes and molecular
clusters. In recent years, the application of TOF-SIMS
in SYNL has shown new capabilities with the extension
of research work in many fields. Even if the content of
rare earth in steel is less than 100 ppm, the secondary ions
ratio of the oxidized species to the non-oxidized species
of rare earth can be used to distinguish whether rare earth
exists in the form of oxide or solid solution in steel. Three-
dimensional analysis technology of TOF-SIMS can clearly
distinguish the trace element diffusion at a metal/ceramics
heterogeneous interface. TOF-SIMS also finds increasing

applications for 2D material research.
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Fig. 1: 2D crystal characterized by microanalysis techniques, optical microscope, atomic force microscope, selected area electron
diffraction and HR-TEM.
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5.1.1 DIRECTOR OF SYNL (1)

LU Ke

5.1.2 DEPUTY DIRECTORS OF SYNL (2)

ZHANGJ insong*
LI Xiuyan*

(*Concurrent Post as PI)

5.1.3 RESEARCH DIVISION HEADS (13)

CHEN Xinggiu*
CHENG Huiming
HUANG Xiaoxu™*
JIAJ infeng*

LI Dianzhong™
LIYi*

LU Ke

LU Jian*

MA Xiuliang™®
WANG Fuhui
WANG Jingyang™*
ZHANG Jinsong*
ZHANG Zhidong

(*Concurrent Post as PI)

5.1.4 PRINCIPAL INVESTIGATORS (60)

CHEN Chunlin
CHEN Minghui
CHEN Xian
CHEN Xingqiu
DU Kui

FU Paixian
HAN Zheng
HU Weijin

HUANG Mingxin
HUANG Xiaoxu
JIA Jinfeng
JIANG Xin
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JIAO Yilai

JIN Haijun

LI Bing

LI Dianzhong

LI Feng

LI Meishuan

LI Qi

LI Xiuyan

LIYi

LIU Chang

LIU Gang

LIU Chain-Tsuan
LIU Li

LIU Qing

LIU Wei

LU Lei

LU Shanping

LU Jian

MA Xiuliang
MA Zongyi

QI Wei

REN Wencai
SHANG Jianku
SROLOVITZ David Joseph
SU Guoyue

SUN Dongming
TAI Kaiping
TAO Nairong
WANG lJiangiang
WANG Jingyang
WANG lJingfeng
WANG Pei
WANG Shaoqing
WANG Xiaohui
WANG Zhenhua
WANG Zhenbo
XU Dake

YANG Yongjin
YANG Zhenming
ZHANG Bo
ZHANG Guangping
ZHANG Haifeng
ZHANG lie
ZHANG lJinsong
ZHANG Junqi
ZHANG Tao
ZHU Yinlian
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5.1.5 TECHNICAL SUPPORT
LEADERS (5)

ZHANG Lei* ( Deputy Head )
TAN Jun

WANG Shaogang

WU Bo

YAO Ge

(*Concurrent Post as Support Group Leader)

5.1.6 TECHNOLOGY ADMINISTRATION
OFFICE (5)

SHI Yuanbao ( Head )
CHEN Hongmei

NIE Yingshi

XING Chuanyu

YAN Wei

5.1.7 SYNL OFFICE (6)

LIU Shuwei ( Head )
GAO Feng

LI Dongxu

LIU Wei

LYU Qing

YANG Le
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5.2.1 BY FACULTY AND STAFF

LUKe
Acta Materialia Gold Medal

LI Yiyi
Highest Science and Technology Award of Liaoning
Province

MA Xiuliang
Academician of Asia Pacific Academy of Materials

WANG Jingyang
Fellow of the American Ceramic Society

MA Zhongyi, XIAO Bolv, NI Dingrui, XUE Peng,
WANG Dong
First Prize of Natural Science Award, Liaoning Province

CHEN Xianhua, WANG Jingfeng, PENG Jian, WANG
Yong, PAN fusheng

Second Prize of Nature Science Award by Minister of
Education, China

JIA Jinfeng, QIAN Dong, LIU Canhua, GAO Chunlei,
Guan Dandan

Second Prize of Nature Science Award by Minister of
Education, China
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5.2.2 BY STUDENTS

FANG Ruopian
CAS Excellent Doctoral Dissertation Award

YANG Yonggiang
CAS Excellent Doctoral Dissertation Award

CHENG Zhao

Special Prize of the CAS Presidential Scholarship
Excellent Doctoral Dissertation Award, University of
Science and Technology of China

JIN Qun
Special Prize of the CAS Presidential Scholarship

ZHOU Xin

Special Prize of the CAS Presidential Scholarship
Excellent Doctoral Dissertation Award, University of
Science and Technology of China

KANG Yuyang
Excellent Prize of the CAS Presidential Scholarship
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5.3.1 SERVICE TO THE INTERNATIONAL
PROFESSIONAL SOCIETIES

CHENG Huiming
Member,
Asian Association of Carbon Groups

CHENG Huiming

Member of International Scientific Committee,

Workshop on Nucleation and Growth Mechanisms of
Single-Walled Carbon Nanotubes

CHENG Huiming
Member of International Advisory Committee,
Conference on Carbon

CHENG Huiming

Member of Program Committee,

International Winterschool on Eelctronic Properties of
Novel Materials

CHENG Huiming

Council Member,

International Academy of Electrochemical Energy
Science and Technology

CHENG Huiming

Chinese representative,

The Asia-Pacific Association of Energy Storage and
Conversion

HUANG Xiaoxu
Program Chair,
THERMEC

LI Bing
Expert Panel Member,
Proposal Evaluation Committee of J-PARC

LIU Qing

Member,

International Technology Committee of the National
Light Metal Research Center in Australia

LU Ke

Member of International Advisory Committee,
International Conference on Rapidy Quenched and
Metastable Meterials (RQ)

LU Lei
Member,
International conference on the Strength of Materials

LU Lei
Member,
International Committee on Nanostructured Materials
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LU Lei
Member,

International Advisory Committee of THERMEC

LU Jian
Member of University Advisory Board,
HKUST MIT Research Alliance Consortium

LU Jian

Member of Gordon Research Committee’s Hong Kong
Advisory Board,

Gordon Research Conference

WANG Fuhui
Committee Member,
International Corosion Enineering Council

WANG Jingyang

President of The World Academy of Ceramics Forum
Committee,

The World Academy of Ceramics

WANG Jingyang
Member of International Advisory Board,
European Ceramic Society

WANG Jingyang
Member of Board of Directors,
The World Academy of Ceramics

WANG Jingyang

Member of Geijsbeek PACRIM International Award
Committee,

The American Ceramic Society

WANG Jingyang

Member of Edward Orton Jr. Memorial Lecture Award
Committee,

The American Ceramic Society

WANG Jinyang

Member of Executive Committee of Engineering
Ceramics Division,

The American Ceramic Society

ZHANG Jie
Member of John Jeppson Award Sub-Committee,
American Ceramic Society

ZHANG lJie

Member of Engineering Ceramic Division Award
Committee,

American Ceramic Society
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5.3.2 SERVICE TO THE INTERNATIONAL
JOURNALS

CAO Yanfei
Member of the Editorial Committee,
Advances in Materials

CHEN Xianhua
Member of the Editorial Committee,
Acta Metallurgica Sinica

CHEN Xingqiu
Member of the Editorial Committee,
Progress in Natural Science, Materials International

CHEN Xingqiu
Member of the Editorial Committee,
Scientific Report

CHEN Xingqiu
Member of the Editorial Committee,
Science China Materials

CHEN Xingqiu
Member of the Editorial Committee,
Journal of Materials Science & Technology

CHEN Xinggqiu
Member of the Editorial Committee,
Metals

CHENG Huiming
Editor-in-Chief,
Energy Storage Materials

CHENG Huiming
Member of the Editorial Committee,
Nano

CHENG Huiming
Member of the Editorial Committee,
Carbon Letters

CHENG Huiming
Member of the Editorial Committee,
Journal of Materials Science & Technology

CHENG Huiming
Member of the Editorial Committee,
Materials Research Letters

CHENG Huiming
Member of the Editorial Committee,
Journal of Nanomaterials & Molecular Nanotechnology
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CHENG Huiming
Member of the Editorial Committee,
National Science Review

CHENG Huiming
Associate Editor,
Science China Materials

CHENG Huiming
Member of the Editorial Committee,
Applied Materials Today

CHENG Huiming
Member of the Editorial Committee,
Advanced Electronic Materials

CHENG Huiming
Member of the Editorial Committee,
Carbon

CHENG Huiming
Member of the Advisory Committee,
Materials Today Physics

CHENG Huiming
Member of the Advisory Committee,
Journal of Physics-Energy

HAN Zheng
Member of the Editorial Committee,
Journal of Semiconductors

Huang Mingxin
Editor,
Metals and Materials International

Huang Mingxin
Editor,
Journal of Materials Science & Techonolgy

Huang Mingxin
Member of Editorial Review Board,
Materials Research Letters

Huang Mingxin
Member of Editorial Board,
Metallurgical and Materials Transactions A

Huang Mingxin
Member of Editorial Board,
Materials Science & Technology

Huang Xiaoxu
Associate Editor,
Nano Materials Science
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LI Feng
Member of the Editorial Board,
Energy Storage Materials

LI Feng
Member of the Editorial Board,
Journal of Energy Chemistry

LI Feng
Member of the Editorial Board,
Journal of Physics: Energy

LI Meishuan
Member of the Editorial Board,
Journal of Materials Science & Technology

LI Yangyang
Member of the Editorial Board,
American Journal of Translational Research

LI Yangyang

Associate Editorial Board Member,

American Journal of Nuclear Medicine and Molecular
Imaging

LI Yangyang
Associate Editorial Board Member,
Materials Letters

LIYi
Member of the Editorial Committee,
Journal of Materials Science & Technology

LIU Chang
Associate Editor,
Nano Materials Science

LIU Chang
Editor,
Carbon

LIU Chang
Member of the Editorial Committee,
Science China Materials

LIU Baodan
Member of the Editorial Board,
Scientific Reports

LIU Gang
Member of the Editorial Board,
Journal of Materials Science & Technology

LIU Gang
Member of the Editorial Board,
Journal of Physics: Energy

W 195

SYNL



SYNL 2019 & 8% (ANNUAL REPORT)

x| & 18
(AaMHTHELEMN) HE

x| & 18
(e RLEY B4

x| R
(eab5MH) %t

PR
(HHE) 1FF mit

PoAT
(EERMAF L4 E) MFER 2% R

Foa
(P R) %

£
(b%. BEEEH 5 IT) Gk

£
(AR EALR) P 452 % R

VA
CHA IR %5

P&
CHHHIIR) it

P&
G5 A th%

P&
CPEAFE. HH) Bt

P&
(& kFI) %t

FolN g
(R@5REHR) Bt

196

%

SYNL

LIU Hongyang
Member of the Editorial Board,
Materials Today Sustainability

LIU Hongyang
Member of the Editorial Board,
Journal of Energy Chemistry

LIU Qing
Member of the Editorial Board,
Metall. & Mater. Trans

LU Ke
Reviewing Editor,
Science

LU Ke
Member of the Advisory Board,
International Journal of Materials Research

LU Ke
Member of Editorial Board,
Journal of Materials Science & Technology

LU Ke
Member of Editorial Board,
Metallurgy, Microstructure, and Analysis

LU Ke
Member of Advisory Board,
Journal of Materials Research& Technology

LU Lei
Editor,
Acta Materialia

LU Lei
Editor,
Scripta Materialia

LU Lei
Member of Editorial Board,
Journal of Materials Science and Technology

LU Lei
Member of Editorial Board,
Science China Materials

LU Lei
Member of Editorial Board,
Acta Metallurgica Sinica

LU Xiaopeng
Member of Editorial Board,
Surface & Coating technology
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MA Xiuliang
Member of Editorial Board,
Scientific Reports

MA Xiuliang
Member of Editorial Board,
Materials Letters

MA Xiuliang
Member of Advisory Board,
APL Materials

MA Xiuliang
Member of Editorial Board,
Current Smart Materials

MA Zongyi
Member of Editorial Board,
Materials Science and Engineering: A

MA Zongyi
Member of Editorial Board,
Innovations in Corrosion and Materials Science

MA Zongyi
Member of Editorial Board,
Journal of Materials: Design and Applications

MA Zongyi
Member of Editorial Board,
Journal of Materials Science & Technology

MA Zongyi
Member of Editorial Board,
Science China Materials

MA Zongyi
Member of Editorial Board,
Acta Metallurgica Sinica

MA Zongyi
Member of Editorial Board,
Science China Technological Sciences

MA Zongyi
Member of Editorial Board,
Science and Technology of Welding and Joining

REN Wencai
Member of Editorial Board,
Science China Materials

REN Wencai
Member of Editorial Board,
2D Materials
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REN Wencai
Member of Editorial Board,
Journal of Materials Science & Technology

REN Wencai
Associate Editor,
Graphene Technology

REN Wencai
Member of Editorial Board,
Materials Today Advances

REN Wencai
Member of Editorial Board,
FlatChem

SUN Dongming
Member of Editorial Board,
Journal of Materials Science & Technology

WANG Fuhui
Editor-in-Chief,
Corrosion Communications
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